• 제목/요약/키워드: ultimate axial load

검색결과 249건 처리시간 0.025초

비보강 조적벽체의 면내거동 해석 (Analysis on In-Plane Behavior of Unreinforced Masonry Walls)

  • 김장훈;권기혁
    • 한국지진공학회논문집
    • /
    • 제6권3호
    • /
    • pp.1-10
    • /
    • 2002
  • 비록 제한된 범위내에서나마 일련의 유한요소해석을 통하여 비보강 조적조 벽체의 면내방향 내진성능을 조사하였다. 이를 위하여 비보강 조적벽체는 연속체로 가정하여 등방성 평면응력요소로 취급하였으며, 비보강 조적조의 균열거동을 위하여 균열특성이 요소내에 분포하는 것으로 가정하는 분포균열모델을 사용하였다. 모두 70가지 서로 다른 경우의 비보강 조적벽체 모델을 해석하였는데, 축력비, 형상비 및 유효단면적비 등의 변수를 고려하였다. 해석결과 이들 변수가 비보강 조적벽체의 극한강도에 지대한 영향을 미치며 상호 작용하는 것으로 확인되었다. 비보강 조적벽체의 여러 가지 취성적 요인과 복합적인 파괴형태의 가능성을 감안하여 현재 우리 나라 규준에서 사용하고 있는 반응수정계수의 크기를 재고하여야 함이 지적되었다.

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • 제6권1호
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.

형상비 4.0인 비내진 철근콘크리트 기둥의 파괴거동 (Failure Behavior of Non-seismic RC Column with aspect ratio of 4.0)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권6호
    • /
    • pp.59-66
    • /
    • 2020
  • 축소모형 팔각형 기둥 실험체 2개를 제작하여 일정한 축력 하에서 반복 횡하중을 가력하는 실험을 수행하였다. 실험체는 중실단면과 중공단면이고 모든 실험체의 횡방향 나선철근 체적비는 0.00206의 값을 갖는다. 실험체들은 휨-전단 파괴거동을 보였다. 본 논문에서는 실험결과에 따른 파괴거동과 내진성능을 분석하였다. 실험결과, 중공 실험체는 초기강성, 초기 균열양상, 에너지 소산능력 등의 구조성능이 중실 실험체와 유사한 거동을 보였으나, 중공 실험체의 경우에는 3% 변위비 이후에 횡력, 극한변위, 에너지소산능력이 현저하게 감소되었다.

철근콘크리트 원형 교각의 전단성능에 대한 횡방향철근의 영향 (Effect of Transverse Steel on Shear Performance for RC Bridge Columns)

  • 고성현
    • 한국지진공학회논문집
    • /
    • 제25권5호
    • /
    • pp.191-199
    • /
    • 2021
  • In seismic design, hollow section concrete columns offer advantages by reducing the weight and seismic mass compared to concrete section RC bridge columns. However, the flexure-shear behavior and spirals strain of hollow section concrete columns are not well-understood. Octagonal RC bridge columns of a small-scale model were tested under cyclic lateral load with constant axial load. The volumetric ratio of the transverse spiral hoop of all specimens is 0.00206. The test results showed that the structural performance of the hollow specimen, such as the initial crack pattern, initial stiffness, and diagonal crack pattern, was comparable to that of the solid specimen. However, the lateral strength and ultimate displacement of the hollow specimen noticeably decreased after the drift ratio of 3%. The columns showed flexure-shear failure at the final stage. Analytical and experimental investigations are presented in this study to understand a correlation confinement steel ratio with neutral axis and a correlation between the strain of spirals and the shear resistance capacity of steel in hollow and solid section concrete columns. Furthermore, shear strength components (Vc, V, Vp) and concrete stress were investigated.

Comparative study on bearing characteristics of pervious concrete piles in silt and clay foundations

  • Cai, Jun;Du, Guangyin;Xia, Han;Sun, Changshen
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.595-604
    • /
    • 2021
  • With the advantages of high permeability and strength, pervious concrete piles can be suitable for ground improvement with high water content and low bearing capacity. By comparing the strength and permeability of pervious concrete with different aggregate sizes (3-5 mm and 4-6 mm) and porosities (20%, 25%, 30% and 35%), the recommended aggregate size (3-5 mm) and porosity (30%) can be achieved. The model tests of the pervious concrete piles in soft soil (silt and clay) foundations were conducted to evaluate the bearing characteristics, results show that, for the higher consolidation efficiency of the silty foundation, the bearing capacity of the silty foundation is 16% higher, and the pile-soil stress ratio is smaller. But when it is the ultimate load for the piles, they will penetrate into the underlying layer, which reduces the pile-soil stress ratios. With higher skin friction of the pile in the silty foundation, the pile penetration is smaller, so the decrease of the pile axial force can be less. For the difference in consolidation efficiency, the skin friction of pile in silt is more affected by the effective stress of soil, while the skin friction of pile in clay is more affected by the lateral stress. When the load reaches 4400 N, the skin friction of the pile in the silty foundation is about 35% higher than that of the clay foundation.

철근콘크리트 전단벽의 횡하중-횡변위 관계의 일반화 (Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls)

  • 문주현;양근혁
    • 콘크리트학회논문집
    • /
    • 제26권2호
    • /
    • pp.159-169
    • /
    • 2014
  • 이 연구에서는 철근콘크리트 전단벽의 횡하중 거동과 연성을 합리적으로 평가하기 위해서 모멘트-곡률관계를 정립하고 이로부터 단순화된 횡하중-횡변위관계를 제시하였다. 최초 휨 균열, 인장철근 항복, 최대내력, 최대내력의 80% 및 인장철근파단시점에서 모멘트와 곡률은 힘의 평형조건과 변형적합조건으로부터 정립되었다. 최대내력 이후의 곡률평가를 위한 압축측연단 콘크리트 변형률은 Razvi and Saatcioglu의 구속된 콘크리트의 응력-변형률 관계를 이용하여 최대응력의 감소계수와 횡보강근 체적지수의 함수로 제시하였다. 모멘트 평가모델은 변수연구를 통하여 인장철근지수, 수직철근지수 및 축력지수의 함수로 일반화하였다. 횡변위는 전단벽의 높이에 따라 분포된 이상화된 곡률로부터 모멘트 면적법을 이용하여 환산하였다. 제시된 횡하중-횡변위관계는 기존 실험 결과와 잘 일치하였으며, 특히 최대내력 이후의 거동을 잘 평가하였다.

Soil Nail로 보강된 현장타설말뚝의 하중전이 분석 (Load Transfer Analysis of Drilled Shafts Reinforced by Soil Nails)

  • 정상섬;함홍규;이대수
    • 한국지반공학회논문집
    • /
    • 제20권1호
    • /
    • pp.37-47
    • /
    • 2004
  • 본 연구에서는 암반에 근입된 현장타설말뚝의 지지력을 높이기 위해 말뚝 주면에 soil nail을 정착한 타설말뚝의 축하중 해석을 수행하여 그 거동을 파악하였으며, soil nail의 유ㆍ무에 따른 보강효과를 분석하였다. 이를 위해 Beam-Column모델을 이용하여 현장타설말뚝과 지반을 모델링하고 하중전이곡선을 사용하여 말뚝지반의 상호작용을 고려하였다. 무보강 말뚝의 경우, 서해대교 현장재하시험결과 및 범용 프로그램인 Shaft 4.0의 해석결과와 비교ㆍ분석을 수행하였다. 보강형 말뚝의 경우에는 말뚝이 타설되는 지반을 [사질토+풍화암], [사질토+연암], [사질토+경암]으로 나누어 지반조건에 따른 soil nail의 보강효과를 파악하였다. 본 해석결과와 현장 실측치, SHAFT 4.0의 해석결과를 분석한 결과 제안된 주면하중전이함수 중 사질토에서는 Vijayvergiya의 함수, 암반에서는 O'Neill-Hassan의 함수가 암반에 근입된 현장타설말뚝의 거동을 비교적 적절히 예측함을 알 수 있었다. 이를 토대로 예측한 보강형 현장타설말뚝의 보강효과는 soil nail까지 하중전이가 나타나는 풍화암층에서 가장 크고, 암질이 양호한 연암과 경암층에서는 그 효과가 그다지 크지 않음을 알 수 있었다.

콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구( I ) -단면형상 및 축력비를 변수로 한 접합부 모델의 적합성 검토- (A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam ( I ) The Investigation of Propriety for Model of Beam-to-Column Joint with Key Parameters, such as Section Type and Axial Force Ratio)

  • 박정민;김화중;문태섭;김규석
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.85-94
    • /
    • 1996
  • This paper investigated structural behaviors of joint of concrete filled steel tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. The results are summarised as follows: (1) The joint stiffness of concrete filled square steel tube column and P.C reinforecd beam was higher than that of concrete filled circular steel tube column and P.C reinforecd beam, and it was decreased as the increase of the number of hysteretic cycle. (2) The aspects of the hysteretic behavior in the joint was stable as the increase of the number of hysteretic cycle, and rotation resisting capacity of joint of concrete filled square steel tube column and P.C reinforced concrete beam was higher than those of the concrete filled circular steel tube column and P.C reinforced concrete beam. (3) Some restriction must be put upon the ratio of axial force in this joint model because the load carrying capacity was decreased by flexural and flexural-torsional buckling in case of the ratio of axial force 0.6. (4) The emprical formula to predict the ultimate capacity of joint model to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF