• Title/Summary/Keyword: ultimate axial load

Search Result 247, Processing Time 0.027 seconds

Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies

  • Mostafa, Mostafa M.A.;Wu, Tao;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.223-239
    • /
    • 2021
  • This paper presents the analytical modeling and finite element (FE) analysis, using ABAQUS software, of the new types of steel reinforced lightweight aggregate concrete (SRLAC) columns with cross-shaped (+shaped and X-shaped) steel section, using proposed three analytical and two FE models in total. The stress-strain material models for different components in the columns, including the confined zones of the lightweight aggregate concrete (LWAC) using three and four concrete zones divisions approaches and with and without taking into account the stirrups reaction effect, are established first. The analytical models for determining the axial load-deformation behavior of the SRLAC columns are drawn based on the materials models. The analytical and FE models' results are compared with previously reported test results of the axially loaded SRLAC columns. The proposed analytical and FE models accurately predict the axial behavior and capacities of the new types of SRLAC columns with acceptable agreements for the load-displacement curves. The LWAC strength, steel section ratio, and steel section configuration affect the contact stress between the concrete and steel sections. The average ratios of the ultimate test load to the three analytical models and FEA model loads, Put /Pa1, Put /Pa2, Put /Pa3, and Put /PFE1, for the tested specimens are 0.96, 1.004, 1.016, and 1.019, respectively. Finally, the analytical parametric studies are also studied, in terms of the effects of confinement, LWAC strength, steel section ratio, and the reinforcement ratio on the axial capacity of the SRLAC column. When concrete strength, confinements, area of steel sections, or reinforcement bars ratio increased, the axial capacities increased.

Axial Strength Evaluation for Tubular X-Joints with Internal Ring Stiffener (고리형 내부 보강재를 가진 X형 관이음부의 축방향 강도 평가)

  • 조현만;류연선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.162-169
    • /
    • 2001
  • Tubular joints are usually reinforced using thicker can section or ring stiffeners to increase the load carrying capacity. In this paper, a numerical study has been performed for evaluation of axial strength for X-joints with internal ring stiffener, The finite element analysis software was used for nonlinear strength analysis. According to variation of ring geometries, the effect of ring stiffener for X-joints are investigated. Internal ring stiffener is found to be efficient improving ultimate strength of tubular joints. Relations of thickness of ring and axial strength are observed considering geometric parameters of ring stiffeners.

  • PDF

Analysis of segment lining cracking load considering axial force by varying boundary condition (경계조건 변화에 의해 발생한 축력을 고려한 세그먼트 라이닝의 균열하중 분석)

  • Lee, Gyu-Phil;Bae, Gyu-Jin;Kang, Tae-Sung;Chang, Soo-Ho;Choi, Soon-wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • In the design of tunnel segment structure, axial and moment forces are considered as significant forces. Since axial force is much greater than moment force, the whole section of segment remains in compression. Therefore crack width can be reduced. But the axial force is not considered in criteria for serviceability check. This fact leads service condition more severe compared to ultimate condition and makes the required steel reinforcement increase to meet the serviceability criteria. In this study, the effect of axial force on serviceability of tunnel segment is evaluated, experimentally and analytically. Mock-up tests on segments with actual size were performed and investigated in terms of initial crack resistance. The evaluation proves that more comprehensive design could be achieved when the axial force is considered in the procedure for the serviceability check in design of tunnel segment.

Effect of Stiffener's Web Height against Axial Compression Ultimate Strength Considering Lateral Pressure Load (횡하중을 고려한 압축최종강도에 대한 보강재 치수의 영향)

  • Oh, Young-Cheol;Ko, Jae-Yong;Oh, Dong-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.89-93
    • /
    • 2008
  • Stiffened panels are basic strength members which have been used widely in a vessel or an offshore. They have been used often a deck, a side and a bottom structure of ship and have a number of one sided stiffener in either one or both directions called grillage. Their buckling and plastic collapse become damaged reason of the hull girder so it needs to investigate accurately buckling and ultimate strength of stiffened panels. In the present paper, using the ANSYS, a commercial finite element analysis code, we conducted the evaluation regarding buckling and post-buckling behaviour of stiffened panels, and analyzed stiffener's web height change, considering the effect of lateral pressure load against compression ultimate strength.

  • PDF

Behaviors of UHPC-filled Q960 high strength steel tubes under low-temperature compression

  • Yan, Jia-Bao;Hu, Shunnian;Luo, Yan-Li;Lin, Xuchuan;Luo, Yun-Biao;Zhang, Lingxin
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.201-219
    • /
    • 2022
  • This paper firstly proposed high performance composite columns for cold-region infrastructures using ultra-high performance concrete (UHPC) and ultra-high strength steel (UHSS) Q960E. Then, 24 square UHPC-filled UHSS tubes (UHSTCs) at low temperatures of -80, -60, -30, and 30℃ were performed under axial loads. The key influencing parameters on axial compression performance of UHSS were studied, i.e., temperature level and UHSS-tube wall thickness (t). In addition, mechanical properties of Q960E at low temperatures were also studied. Test results revealed low temperatures improved the yield/ultimate strength of Q960E. Axial compression tests on UHSTCs revealed that the dropping environmental temperature increased the compression strength and stiffness, but compromised the ductility of UHSTCs; increasing t significantly increased the strength, stiffness, and ductility of UHSTCs. This study developed numerical and theoretical models to reproduce axial compression performances of UHSTCs at low temperatures. Validations against 24 tests proved that both two methods provided reasonable simulations on axial compression performance of UHSTCs. Finally, simplified theoretical models (STMs) and modified prediction equations in AISC 360, ACI 318, and Eurocode 4 were developed to estimate the axial load capacity of UHSTCs at low temperatures.

Study of Smart Bi-directional Pile Load Test by Model Test (모형시험을 통한 Smart 양방향말뚝 재하시험에 관한 연구)

  • Kim, Nak-Kyung;Kim, Ung-Jin;Joo, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1088-1093
    • /
    • 2010
  • The Smart bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of piles can be known by using two different end plates. The first step is to measure end bearing capacity with smaller end plate and the second step is similar to the conventional O-cell test. In this study, model test was performed to evaluate the smart bi-directional pile load test in sand. Vertical displacement of the model pile were messured at the axial loading condition.

  • PDF

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.

Experimental Investigation on Post-Fire Performances of Fly Ash Concrete Filled Hollow Steel Column

  • Nurizaty, Z.;Mariyana, A.A.K;Shek, P.N.;Najmi, A.M. Mohd;Adebayo, Mujedu K.;Sif, Mohamed Tohami M.A;Putra Jaya, Ramadhansyah
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.335-344
    • /
    • 2021
  • In structural engineering practice, understanding the performance of composite columns under extreme loading conditions such as high-rise bulding, long span and heavy loads is essential to accuratly predicting of material responses under severe loads such as fires or earthquakes. Hitherto, the combined effect of partial axial loads and subsequent elevated temperatures on the performance of hollow steel column filled fly ash concrete have not been widely investigated. Comprehensive test was carried out to investigate the effect of elevated temperatures on partial axially loaded square hollow steel column filled fly ash concrete as reported in this paper. Four batches of hollow steel column filled fly ash concrete ( 30 percent replacement of fly ash), (HySC) and normal concrete (CFHS) were subjected to four different load levels, nf of 20%, 30%, 40% and 50% based on ultimate column strength. Subsequently, all batches of the partially damage composite columns were exposed to transient elevated temperature up to 250℃, 450℃ and 650℃ for one hour. The overall stress - strain relationship for both types of composited columns with different concrete fillers were presented for each different partial load levels and elevated temperature exposure. Results show that CFHS column has better performance than HySC at ambient temperature with 1.03 relative difference. However, the residual ultimate compressive strength of HySC subjected to partial axial load and elevated temperature exposure present an improvement compared to CFHS column with percentage difference in range 1.9% to 18.3%. Most of HySC and CFHS column specimens failed due to local buckling at the top and middle section of the column caused by concrete crushing. The columns failed due to global buckling after prolong compression load. After the compression load was lengthened, the columns were found to fail due to global buckling except for HySC02.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

A Study on Properties of Mechanical Behaviors of Concrete Confined by Circular Steel Tube (원형강관으로 구속된 콘크리트의 역학적 거동 특성에 관한 연구)

  • 박정민;김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.199-210
    • /
    • 1995
  • We could say that the concrete filled steel tube structure is superior in the vlew of various structure properties as to promote improvement of structural capacity to dtmonstrate heterogeneous material properties interdependently. The compressive strength is increased by putting to tri axial stress because lateral expansion of concrete 1s confined by the steel tube, when concrete conflned by steel tube fall under centric axial load. Also, it have an advantage that decreasr of load carrying capacity 1s small, not occuring section deficiency due to protect falling piienornonon by co~nprrssion fallurc of concrete. So this study investigated for structural behaviors yroprrtiex of concwir. confined by steel tube throughout a series of experlmerit with kcy parxncter, such as diameter-to-thickness(D / t) ratio, strength of concrete as a study on properties of structural behaviors of confined concrete confined by circular steel tube( tri axial stress). Frorn the expcrment results, the obtained results, are surnrnarised as foliow. (1) The restraint effect of concrete by steel tube was presented significantly as the D /t ratio of steel tube and the strength of filled concrete decrease, and the confined concrete by circular steel tube was increased respectively twice as much as 4-7 in deformation capacity at the ultimate strength ,compared with those of non-confined concrete, so expected to increase flexible effect of concrete. (2) The emprical formula to predict the ultimate capacity of confined concrete by steel tube and concrete filled steel tube column using restraint coefficient of concrete were proposed.