• 제목/요약/키워드: ultimate analysis

검색결과 1,800건 처리시간 0.025초

작은 충돌손상을 가진 보강판의 최종강도 해석 (Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage)

  • 이탁기;임채환
    • 한국해양공학회지
    • /
    • 제21권4호
    • /
    • pp.34-37
    • /
    • 2007
  • The safety of ships is one of the most important concerns in terms of the environment and human life. A ship in bad condition is likely to be subject to accidents, such as collision and grounding. When a ship has minor collision damages in the form of circle or ellipse, its ultimate strength will be reduced. It is important to evaluate the reduction ratio of a ship's ultimate strength that results from damages. The strength reduction of a plate with a cutout in the form of hole has been treated by many researchers. A closed-form formula for the reduction of ultimate strength of a plate, considering the effect of several forms of cutout, has been suggested. However, the structure of ships is composed of plates and stiffeners so-called stiffened plates and it is likely that plates and stiffeners will be damaged together in collisions. This paper investigates the effect of minor collision damages on the ultimate strength of a stiffened plate by using numerical analysis. For this study, the deformed shape of minor collision damages on a stiffened plate was made by using a contact algorithm and was used as the initial shape for ultimate stress analysis. Then, a series of nonlinear FE analyses was conducted to investigate the reduction effects on the ultimate strength of the stiffened plate. The boundary conditions were simply supported at all boundaries, and the tripping of stiffener was neglected. The results are presented in the form of reduction ratio between the ultimate strength of an original, intact stiffened plate and that of a damaged stiffened plate.

탄소성 모델에 의한 포물선 아치의 극한 내하력 평가 (The Ultimate Load Capacity of the Parabolic Arches by Elasto-Plastic Model)

  • 조진구;박근수
    • 한국농공학회지
    • /
    • 제44권3호
    • /
    • pp.92-100
    • /
    • 2002
  • The advent or high-strength steel has enabled the arch structures to be relatively light, durable and long-spanned by reducing the cross sectional area. On the other hand, the possibility of collapse may be increased due to the slender members which may cause the stability problems. The limit analysis to estimate the ultimate load is based on the concept of collapse mechanism that forms the plastic zone through the full transverse sections. So, it is not appropriate to apply it directly to the instability analysis of arch structures that are composed with compressive members. The objective of this study is to evaluate the ultimate load carrying capacity of the parabolic arch by using the elasto-plastic finite element model. As the rise to span ratio (h/L) varies from 0.0 to 0.5 with the increment of 0.05, the ultimate load has been calculated fur arch structures subjected to uniformly distributed vertical loads. Also, the disco-elasto-plastic analysis has been carried out to find the duration time until the behavior of arch begins to show the stable state when the estimated ultimate load is applied. It may be noted that the maximum ultimate lead of the parabolic arch occurs at h/L=0.2, and the appropriate ratio can be recommended between 0.2 and 0.3. Moreover, it is shown that the circular arch may be more suitable when the h/L ratio is less than 0.2, however, the parabolic arch can be suggested when the h/L ratio is greater than 0.3. The ultimate load carrying capacity of parabolic arch can be estimated by the well-known formula of kEI/L$^3$where the values of k have been reported in this study. In addition, there is no general tendency to obtain the duration time of arch structures subjected to the ultimate load in order to reach the steady state. Merely, it is observed that the duration time is the shortest when the h/L ratio is 0.1, and the longest when the h/L ratio is 0.2.

프리스트레스트 콘크리트 연속보의 극한모멘트계산을 위한 구조해석 (Structural Analysis of Prestressed Concrete Continuous Beams for Ultimate Moment Calcalation)

  • 이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.7-12
    • /
    • 1994
  • In structural analysis of prestressed concrete continuous flexural mambers, secondary effects produced by tendon forces should be reasonably estimated. The secondary moment at service load stags is normally used for ultimate required moment caculation in strength design. This concept has to be reviewed when precise analysis is performed considering construction step, time dependent properties of concrete and tendon. An ultimate moment computation proposed, concept and structural behavior. The previously proposed procedure by other researcher and the proposed procedure are compared and reviewed for the currently constructed precast prestressed concrete bridge.

  • PDF

규격별 비부착 긴장재의 극한응력식에 대한 비교 연구 (A Comparitive Study on the Ultimate Tendon Stress of Unbonded Tendon According to Various Codes)

  • 유성원;서정인
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • The unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of bonded PSC members because of having different tendon stress increment. Recently, AASHTO changed the provision of ultimate tendon stress with unbonded tendons, because some researches tried to improve the provision of ultimate tendon stress with unbonded tendons. The purpose of the present study is to compare various Codes with the ultimate failure stresses of prestressing(PS) steels for the unbonded PSC members. To this end, Some national Codes have been collected and analyzed. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, concrete compressive strength, effective prestress, and prestressing steel ratio have great influence on the ultimate failure stress of PS steel in unbonded PSC members. The Comparison indicates that existing formulas including ACI and domestic Code's equations shows some unwarranties. The present study allows more realistic analysis and design of prestressed concrete structures with internal unbonded tendons.

  • PDF

Ultimate response of bionics shells

  • Tesar, Alexander;Minar, Michal
    • Structural Engineering and Mechanics
    • /
    • 제14권2호
    • /
    • pp.135-150
    • /
    • 2002
  • Numerical analysis of ultimate behaviour of thin bionics shells is treated in present paper. Interactive conditions in resonance and stability ultimate response are considered. Numerical treatment of nonlinear problems appearing is made using the updated Lagrangian formulation of motion. Each step of the iteration approaches the solution of linear problem and the feasibility of parallel processing FETM-technique with adaptive mesh refinement and substructuring for the analysis of ultimate action of thin bionics shells is established. Some numerical results are submitted in order to demonstrate the efficiency of the procedures suggested.

외부 프리스트레스트 콘크리트 부재의 극한상태에서의 강선응력예측식 제안 (Prediction of Prestressing Steel Stress at Ultimate State of Prestressed Concrete Members with External Unbonded Tendons)

  • 오병환;유성원
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.13-24
    • /
    • 1999
  • The external, unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of internal bonded PSC members because of eccentricity change and slip occurrence during loading process. The purpose of the present study is to propose the ultimate failure stresses of prestressing (PS) steels for those external unbonded PSC members. To this end, a comprehensive analysis has been made using the nonlinear finite element analysis program developed recently for external unbonded PSC members by authors. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, load geometry, amount of ordinary steel, and prestressing steel ration have great influence for the ultimate failue stress of PS steel is preposed and is compared with experimental dat as well as existing formulas for internal unbonded members. The Comparison indicates that the proposed equation agrees relatively well with experimental data and that existing formulas including ACI and AASHTO equations show some discrepancies from experimental ones. The present study allows more realistic analysis and design of prestressed concrete structures with external unbonded tendons.

Probabilistic ultimate strength analysis of submarine pressure hulls

  • Cerik, Burak Can;Shin, Hyun-Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.101-115
    • /
    • 2013
  • This paper examines the application of structural reliability analysis to submarine pressure hulls to clarify the merits of probabilistic approach in respect thereof. Ultimate strength prediction methods which take the inelastic behavior of ring-stiffened cylindrical shells and hemi-spherical shells into account are reviewed. The modeling uncertainties in terms of bias and coefficient of variation for failure prediction methods in current design guidelines are defined by evaluating the compiled experimental data. A simple ultimate strength formulation for ring-stiffened cylinders taking into account the interaction between local and global failure modes and an ultimate strength formula for hemispherical shells which have better accuracy and reliability than current design codes are taken as basis for reliability analysis. The effects of randomness of geometrical and material properties on failure are assessed by a prelimnary study on reference models. By evaluation of sensitivity factors important variables are determined and comparesons are made with conclusions of previous reliability studies.

스트럿-타이 모델에 의한 개구부를 갖는 깊은 보의 극한강도 예측 (Prediction of Ultimate Strength of Concrete Deep Beams with an Opening Using Strut-and-Tie Model)

  • 지호석;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.189-194
    • /
    • 2001
  • In this study, ultimate strength of concrete deep beams with an opening is predicted by using Strut-and-Tie Model with a new effective compressive strength. First crack occurs around an opening by stress concentration due to geometric discontinuity. This results in decreasing ultimate strength of deep beams with an opening compared with general deep beams. With fundamental notion that ultimate strength of deep beam with an opening decreases as a result of reduction in effective compressive strength of a concrete strut, an equivalent effective compressive strength formula is proposed in order to reflect ultimate strength reduction due to an opening located in a concrete strut. An equivalent effective compressive strength formula which can reflect opening size and position is added to a testified algorithm of predicting ultimate strength of concrete deep beams. Therefore, ultimate strength of concrete deep beam with an opening is predicted by using a simple and rational STM algorithm including an equivalent effective compressive strength formula, not by finite element analysis or a former complex Strut-and-Tie Model

  • PDF

Ultimate strength of stiffened plates with pitting corrosion

  • Rahbar-Ranji, Ahmad;Niamir, Nabi;Zarookian, Arvin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.509-525
    • /
    • 2015
  • Predicting residual strength of corroded plates is of crucial importance for service life estimation of aged structures. A series of nonlinear finite element method is employed for ultimate strength analysis of stiffened plates with pitting corrosion. Influential parameters, including plate thickness, type and size of stiffeners, pit depth and degree of pitting are varied and more than 208 finite element models are analyzed. It is found that ultimate strength is reduced by increasing pit depth to thickness ratio. Thin and intermediate plates have minimum and maximum reduction of ultimate strength with stronger stiffeners, respectively. In weak stiffener, reduction of ultimate strength in thin and intermediate plates depends on DOP. Reduction of ultimate strength in thick plates depends on thickness of plate and DOP. For intermediate plates, reduction for all stiffeners regardless of shape and size are the same.

완성계 강사장교의 극한 거동의 해석적 연구 (Analytical Study of Ultimate Behavior of Steel Cable-stayed Bridges)

  • 김승준;임석빈;이기세;강영종
    • 대한토목학회논문집
    • /
    • 제32권2A호
    • /
    • pp.85-95
    • /
    • 2012
  • 본 논문은 비선형 해석을 통한 완성계 강사장교의 극한 거동에 대해 다룬다. 사장교는 재료적 비선형성과 함께 다양한 기하학적 비선형성을 나타내므로 극한 거동을 명확히 규명하려면 반드시 합리적인 비선형해석이 수행되어야 한다. 따라서 본 연구에서는 합리적인 극한 해석기법을 통해 활하중에 대한 강사장교의 주요한 극한거동을 규명하고자 하였다. 강사장교의 비선형 해석을 위하여 비선형 트러스 요소 및 비선형 프레임 요소를 이용하였고, 강재의 재료적 비선형성을 효율적으로 고려하기 위해 개선소성힌지법을 이용하였다. 활하중에 대한 극한 거동을 합리적으로 분석하기 위해 본 연구에서는 초기형상해석-활하중 해석으로 이어지는 2단계 해석기법을 통해 극한 해석을 수행하였다. 해석 모델은 총 지간장이 920.0 m 사장교를 이용하였고, 방사형 및 팬 형 사장교를 해석에 이용하였다. 극한해석결과를 통해 얻은 하중-변위 곡선, 구조물 변형형상, 소성단면, 휨모멘트분포도 등을 분석하여 활하중에 대한 완성계 사장교의 주요한 극한 거동을 규명하였다.