• Title/Summary/Keyword: tyrosine phosphatase

Search Result 159, Processing Time 0.028 seconds

Protein-protein interaction between caveolin-1 and SHP-2 is dependent on the N-SH2 domain of SHP-2

  • Park, Hyunju;Ahn, Keun Jae;Kang, Jihee Lee;Choi, Youn-Hee
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.184-189
    • /
    • 2015
  • Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) is known to protect neurons from neurodegeneration during ischemia/reperfusion injury. We recently reported that ROS-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 in astrocytes and complex formation between caveolin-1 and SHP-2 in response to oxidative stress. To examine the region of SHP-2 participating in complex formation with caveolin-1, we generated three deletion mutant constructs and six point mutation constructs of SHP-2. Compared with wild-type SHP-2, binding of the N-SH2 domain deletion mutant of SHP-2 to p-caveolin-1 was reduced greatly, using flow cytometric competitive binding assays and surface plasmon resonance (SPR). Moreover, deletion of the N-SH2 domain of SHP-2 affected $H_2O_2$-mediated ERK phosphorylation and Src phosphorylation at Tyr 419 in primary astrocytes, suggesting that N-SH2 domain of SHP-2 is responsible for the binding of caveolin-1 and contributes to the regulation of Src phosphorylation and activation following ROS-induced oxidative stress in brain astrocytes.

Phosphorylation on the PPP2R5D B regulatory subunit modulates the biochemical properties of protein phosphatase 2A

  • Yu, Un-Young;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.263-267
    • /
    • 2010
  • To characterize the biochemical properties of the PP2A regulatory B subunit, PPP2R5D, we analyzed its phosphorylation sites, stoichiometry and effect on holoenzyme activity. PPP2R5D was phosphorylated on Ser-53, Ser-68, Ser-81, and Ser-566 by protein kinase A, and mutations at all four of these sites abolished any significant phosphorylation in vitro. In HEK293 cells, however, the Ser-566 was the major phosphorylation site after PKA activation by forskolin, with marginal phosphorylation on Ser-81. Inhibitory tyrosine phosphorylation on Tyr-307 of the PP2A catalytic C subunit was decreased after forskolin treatment. Kinetic analysis showed that overall PP2A activity was increased with phosphorylation by PPP2R5D phosphorylation. The apparent Km was reduced from $11.25\;{\mu}M$ to $1.175\;{\mu}M$ with PPP2R5D phosphorylation, resulting in an increase in catalytic activity. These data suggest that PKA-mediated activation of PP2A is enabled by PPP2R5D phosphorylation, which modulates the affinity of the PP2A holoenzyme to its physiological substrates.

PTP1B Inhibitory Secondary Metabolites from Marine-Derived Fungal Strains Penicillium spp. and Eurotium sp.

  • Sohn, Jae Hak;Lee, Yu-Ri;Lee, Dong-Sung;Kim, Youn-Chul;Oh, Hyuncheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1206-1211
    • /
    • 2013
  • The selective inhibition of PTP1B has been widely recognized as a potential drug target for the treatment of type 2 diabetes and obesity. In the course of screening for PTP1B inhibitory fungal metabolites, the organic extracts of several fungal species isolated from marine environments were found to exhibit significant inhibitory effects, and the bioassay-guided investigation of these extracts resulted in the isolation of fructigenine A (1), cyclopenol (2), echinulin (3), flavoglaucin (4), and viridicatol (5). The structures of these compounds were determined mainly by analysis of NMR and MS data. These compounds inhibited PTP1B activity with 50% inhibitory concentration values of 10.7, 30.0, 29.4, 13.4, and 64.0 ${\mu}M$, respectively. Furthermore, the kinetic analysis of PTP1B inhibition by compounds 1 and 5 suggested that compound 1 inhibited PTP1B activity in a noncompetitive manner, whereas compound 5 inhibited PTP1B activity in a competitive manner.

Docking Studies on Formylchromone Derivatives as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors

  • Kim, Chan-Kyung;Lee, Kyung-A;Zhang, Hui;Cho, Hyeong-Jin;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1141-1150
    • /
    • 2007
  • Molecular modeling study has been performed to assist in the design of PTP1B inhibitors using FlexX. FlexX dockings with 19 test ligands, whose structures have been determined by X-ray crystallography, were successful in reproducing the experimental conformations within the protein. An increase in biological activity is observed as hydrophobic character of formylchromone derivatives increases. Most ligands bind to the activesite regions of the protein successfully in two different score runs. The Drug score run gave better results than the FlexX score run based on the score, rank, binding modes and bond distance of docked structures. Consensus values from the CScore scoring function are between 3 and 5, suggesting that the scoring scheme is reliable. All formylchromone inhibitors considered in this work show unidirectional binding modes in the active site pocket, which is contrary to the bidirectional X-ray results by Malamas et al. and amino acid residues responsible for such orientation are identified to help further development of the inhibitors.

Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes

  • Maret, Wolfgang
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic ${\beta}$- and ${\alpha}$-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the pathobiochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of ${\beta}$-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions.

Association of Killer Cell Ig-like Receptor (KIR) with an Adaptor Protein Shc

  • Cho, Hyun-Il;Chwae, Yong-Joon;Park, Sang-Myun;Kim, Jong-Sun
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.67-75
    • /
    • 2006
  • Background: Cytotoxic function of killer cells is inhibited by specific recognition of class I MHC molecules on target cells by inhibitory killer Ig-like receptors (KIR) expressed on NK cells and some cytotoxic T cells. The inhibitory effect of KIR is accomplished by recruitment of SH2-containing protein tyrosine phosphatase (SHP) to the phosphotyrosine residues in the cytoplasmic tail. Methods: By in vitro coprecipitation experiments and transfection analysis, we investigated the association of KIR with an adaptor protein Shc in Jurkat T cells. Results: The cytoplasmic tail of KIR appeared to associate with an adaptor protein Shc in Jurkat T celilysates. Similar in vitro experiments showed that phosphorylated KIR cytoplasmic tail bound SHP-1 and Shc in Jurkat T cell lysates. The association of KIR with Shc was further confirmed by transfection analysis in 293T cells. Interestingly, however, Shc appeared to be replaced by SHP-2 upon engagement of KIR in 293T cells. Conclusion: Our data indicate that KIR associate with an adaptor protein Shc in Jurkat T cells, and suggest that KIR might have an additional role which is mediated by this adaptor protein.

Identification of Differentially Expressed Genes by TCDD in Human Bronchial Cells: Toxicogenomic Markers for Dioxin Exposure

  • Park, Chung-Mu;Jin, Kyong-Suk;Lee, Yong-Woo
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Differentially expressed genes by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were identified in order to evaluate them as dioxin-sensitive markers and crucial signaling molecules to understand dioxin-induced toxic mechanisms in human bronchial cells. Gene expression profiling was analyzed by cDNA microarray and ten genes were selected for further study. They were cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1), S100 calcium binding protein A8 (calgranulin A), S100 calcium binding protein A9 (calgranulin B), aldehyde dehydrogenase 1 family, member A3 (ALDH6) and peroxiredoxin 5 (PRDX5) in up-regulated group. Among them, CYP1B1 was used as a hallmark for dioxin and sharply increased by TCDD exposure. Down-regulated genes were IK cytokine, interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), nuclease sensitive element binding protein 1 (NSEP1), protein tyrosine phosphatase type VI A, member 1 (PTP4A1), ras oncogene family 32 (RAB32). Although up-regulated 4 genes in microarray were coincided with northern hybridization, down-regulated 5 genes showed U-shaped expression pattern which is sharply decreased at lower doses and gradually increased at higher doses. These results introduce some of TCDD-responsive genes can be sensitive markers against TCDD exposure and used as signaling cues to understand toxicity initiated by TCDD inhalation in pulmonary tissues.

Alteration of LAR-RPTP Expression in the Rat Trigeminal Ganglion after Tooth Extraction

  • Kim, Sun-Hun;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.167-172
    • /
    • 2011
  • LAR-RPTP (leukocyte common antigen-related receptor protein tyrosine phosphatase) is an important regulator in the nervous system, but little is known about its expression pattern in rat trigeminal ganglion (TG) neurons. To examine whether LAR-RPTP is expressed in the TG in the current study, we sacrificed rats at 0, 7, 10 and 56 day postpartum (dpp) and a second group of rats at 3 and 5 days after an experimental tooth extraction as a TG injury model. RT-PCR was then used to determine the level of LAR-RPTP expression in the TG and immunohistology was employed to detect the subcellular localization of the protein. The mRNA expression of LAR-RPTP during the developmental stages in the TG was found to gradually increase. After experimental tooth extraction however, these transcript levels had significantly decreased at three days. LAR-RPTP protein signals in the TG were found to be cytoplasmic in the normal animals but interestingly, at five days after an experimental tooth extraction, these signals were rare. These results indicate that LAR-RPTP may be regulated during both the developmental as well as regenerative processes that take place in the TG. This further suggests that LAR-RPTP is not only involved in primary axonogenesis but possibly also in the molecular control of axons during TG repair.

Inhibition of IκB Kinase β (IKKβ) and Anti-diabetic Effect of SA51

  • Bhattarai, Bharat Raj;Kafle, Bhooshan;Hwang, Ji-Sun;Han, Inn-Oc;Cho, Hyeongjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2487-2490
    • /
    • 2013
  • SA51, a medium potency inhibitor of protein tyrosine phosphatase 1B (PTP1B), was identified to be a potent inhibitor of $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$). Consistent with this, SA51 prevented lipopolysaccharide (LPS)-induced breakdown of $I{\kappa}B{\alpha}$ in macrophages. The effects of SA51 in mice were compared with those of structurally related compounds, SA18 and SA32, which were previously reported as inhibitors of both enzymes - less potent against $IKK{\beta}$ but more potent against PTP1B compared to SA51. SA51 improved glucose tolerance and lipid parameters in mice, consistent with the results reported for $IKK{\beta}^{+/-}$ mice. In contrast, SA18 and SA32 showed anti-obesity effects without anti-diabetic effects. Collectively, the effects of SA51 could be due largely to the inhibition of $IKK{\beta}$, whereas SA18 and SA32 may be more likely to inhibit PTP1B, consistent with their relative in vitro inhibitory effects.

Comparison of Main Compounds and Physiological Activities of Anthriscus sylvestris (L.) Hoffm. Roots and Aerial Parts Extracts (전호 지하부와 지상부 추출물의 주요성분 및 생리활성 비교)

  • Kim, Sol;Kim, Ha-Rim;Kim, Sang-Jun;Kim, Seon-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.2
    • /
    • pp.77-83
    • /
    • 2021
  • The number of people suffering from diabetes have been increased around the world. In this study, we investigated the antidiabetic and antioxidant effects of Anthriscus sylvestris(L.) Hoffm and its main compounds. It was divided into root(R) and aerial part(AP) for comparative analysis. Total polyphenol, total flavonoid content was higher in AP extract, but nodakenin content was higher in R(1169.13 ± 6.00 mg/g) extract. Antioxidant activity was also higher in AP extract. To compare antidiabetic efficacy, we analyzed the effects of R and AP extracts on ɑ-glucosidase inhibition(AGI), dipeptidyl peptidase-4(DPP-4) and protein tyrosine phosphatase(PTP)1B activity. R and AP extracts showed similar effects on AGI and DPP-4 activity in a concentration dependent manner, and there was no effect on PTP1B activation. Glucose uptake(139.51 ± 3.19%) in 3T3-L1 cells was more effective in the AP extract-treated group than the positive control, rosiglitazone, group. Both R and AP extracts were effective in protecting against pancreatic beta cell damage caused by hyperglycemia. These results suggest that Anthriscus sylvestris(L.) Hoffm. could be used as a candidate for diabetes treatment.