• Title/Summary/Keyword: tyrosine phosphatase

Search Result 159, Processing Time 0.024 seconds

Molecular Docking Study of Anti-diabetic Xanthones from Garcinia Xanthochymus

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.137-140
    • /
    • 2017
  • Diabetes mellitus has become a major growing public health problem worldwide. More than 90% of all diabetes cases are classified as type 2 diabetes (T2D), which is also known as non-insulin dependent diabetes. Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin signal transduction pathway and has emerged as novel therapeutic strategy for the treatment of type 2 diabetes. PTP1B inhibitors enhance the sensibility of insulin receptor (IR) and have favorable curing effect for insulin resistance-related diseases. Recently twelve anti-diabetic xanthones were isolated from the bark of Garcinia xanthochymus. Hence, in the present study, molecular docking was carried out for these twelve xanthones. The objective of this work is to study the interaction of the newly isolated xanthones with PTP1B. The docking results showed that xanthones have good interactions and has better docking score with PTP1B and suggest LYS120 and ASP181 are the important residues involved in interaction between PTP1B enzyme and the xanthones.

Inhibition of tyrosine phosphatases blocks plasma membrane blebbing during Fas- induced apoptosis of Jurkat T cells without affecting the cytotoxicity of Fas-ligation

  • Cho, Jun-Young;Kim, Kwang-Dong;Kho, Chang-Won;Park, Sung-Goo;Chung, Kyeong-Soo;Lim, Jong-Seok
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.135.2-135.2
    • /
    • 2003
  • Plasma membrane blebs are observed in many types of apoptotic cells, but their processes of formation remain to be clarified. In the present study, we investigated whether there is a relationship between change of intracellular phosphotyrosine levels and biochemical apoptotic events in Jurkat T cells undergoing apoptosis by agonistic anti-Fas antibody. When Jurkat cells were treated with Fas-antibody in the presence or absence of pretreatment with sodium orthovanadate ($Na_3${VO}_4$), a phosphotyrosine phosphatase (PTPase) inhibitor, membrane blebs disappeared in orthovanadate-treated cells. (omitted)

  • PDF

Ligand-Based Virtual Screening for inhibitors of PTP-1B with Antihyperglycemic properties

  • Kim, Heung-Jae;Yoo, Moo-Hi;Son, Mi-Won;Kim, Soon-Hoe
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.359.3-359.3
    • /
    • 2002
  • Protein-tyrosine phosphatase 1 B(PTP-l B). which plays a key role in insulin signaling. is rising as a fascinating target for type 2 diabetes and obesity. Many scientists in structural biology solved the three dimensional X-ray Crystal structure of this type of enzyme, so we could easily get the active site structure of PTP-1 B or complex structure with ligand. Our virtual screening study for PTP-1B exactly based on these crystal strucutures from public database. (omitted)

  • PDF

Characterization of Antidiabetic Compounds from Extract of Torreya nucifera (비자나무 추출물의 항당뇨 활성물질의 특성 연구)

  • Kim, Ji Won;Kim, Dong-Seob;Lee, Hwasin;Park, Bobae;Yu, Sun-Nyoung;Hwang, You-Lim;Kim, Sang Hun;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Natural products have gained increasing attention due to their advantage of long-term safety and low toxicity for a very long time. Torreya nucifera is widespread in southern Korea and Jeju Island and its seeds are commonly used as edible food. Oriental ingredients have often been reported for their insecticidal, antioxidant and antibacterial properties, but there have not yet been any studies on their antidiabetic effect. In this study, we investigated several biological activities of T. nucifera pericarp (TNP) and seeds (TNS) extracts and proceeded to characterize the antidiabetic compounds of TNS. The initial results suggested that TNS extract at 15 and 10 ㎍/ml concentration has inhibitory effects on α-glucosidase and protein tyrosine phosphatase 1B, that is 14.5 and 4.35 times higher than TNP, respectively. Thus, the stronger antidiabetic TNS was selected for the subsequent experiments to characterize its active compounds. Ultrafiltration was used to determine the apparent molecular weight of the active compounds, showing 300 kDa or more. Finally the mixture was then partially purified using Diaion HP-20 column chromatography by eluting with 50~100% methanol. Therefore we concluded that the active compounds of TNS have potential as therapeutic agents in functional food or supplemental treatment to improve diabetic diseases.

CoMSIA Analysis on The Inhibition Activity of PTP-1B with 3${\beta}$-Hydroxy-12-oleanen-28-oic Acid Analogues (3${\beta}$-Hydroxy-12-oleanen-28-oic Acid 유도체들의 PTP-1B저해활성에 대한 CoMSIA분석)

  • Kim, Sang-Jin;Chung, Young-Ho;Kim, Se-Gon;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • The comparative molecular similarity indices analysis (CoMSIA) models between 3${\beta}$-Hydroxy-12-oleanen-28-oic acid (1-30) analogues as substrate molecule and their inhibitory activities ($pI_{50}$) against protein tyrosine phosphatase (PTP)-1B were derived and discussed quantitatively. Listing in order, the CoMFA>CoMSIA${\geq}$HQSAR>2D-QSAR model, these QSAR models had the better statistical values. The optimized CoMSIA F1 model at grid 3.0${\AA}$ had the best predictability and fitness ($q^2$=0.754 and $r^2$=0.976) by field fit alignment. The order of contribution ratio (%) of CoMSIA fields concerning the inhibitory activities was a H-bond acceptor (48.9%), steric field (25.8%) and hydrophobic field (25.4%), respectively. Therefore, the inhibitory activities of substrate molecules against PTP-1B were dependent upon H-bond acceptor field (A) of $R_4$-group. From the analytical results of CoMSIA contour maps, oleanolic acid derivatives will have better inhibition activities if $R_1$ group has H-bond acceptor disfavor, $R_3$group has steric disfavor and $R_4$ group has steric, hydrophobic, H-bond favor.

Low Expression of Tyrosine-protein Phosphatase Nonreceptor Type 12 is Associated with Lymph Node Metastasis and Poor Prognosis in Operable Triple-negative Breast Cancer

  • Wu, Min-Qing;Hu, Pan;Gao, Jie;Wei, Wei-Dong;Xiao, Xiang-Sheng;Tang, Hai-Lin;Li, Xing;Ge, Qi-Dong;Jia, Wei-Hua;Liu, Ren-Bin;Xie, Xiao-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.287-292
    • /
    • 2013
  • Background: Low tyrosine-protein phosphatase nonreceptor type 12 (PTPN12) expression may be associated with breast cancer growth, proliferation, and metastasis. However, the prognostic value of PTPN12 in breast cancer has not been clearly identified. Patients and Methods: 51 triple-negative breast cancer (TNBC) patients and 83 non-TNBC patients with a histopathology diagnosis from October 2001 to September 2006 were included in this study. Immunohistochemical staining for PTPN12 on tissue microarrays was conducted. Results: High PTPN12 expression was seen in 39.2% of TNBC and 60.2 % of non-TNBC cases. Low PTPN12 expression was associated with lymph node status (p = 0.002) and distant metastatic relapse (p = 0.002) in TNBC patients. Similarly, low PTPN12 expression in non-TNBC patients was significantly correlated with lymph node status (p = 0.002), stage (p = 0.002) and distant metastatic relapse (p = 0.039). The high PTPN12 expression group was associated with longer DFS and OS compared with low PTPN12 expression group only in TNBC cases (p = 0.005, p = 0.015), according to univariate Cox regression analysis. Conclusion: These findings provide evidence that low expression of PTPN12 is associated with worse prognosis and may be used as a potential prognostic biomarker in TNBC patients.

Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry

  • Tang, Yan-Hui;Hu, Min;He, Xiao-Peng;Fahnbulleh, Sando;Li, Cui;Gao, Li-Xin;Sheng, Li;Tang, Yun;Li, Jia;Chen, Guo-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1000-1006
    • /
    • 2011
  • The discovery of carbohydrate-based bioactive compounds has recently received considerable interest in the drug development. This paper stresses on the application of 1-methoxy-O-glucoside as the central scaffold, whereas salicylic pharmacophores were introduced with diverse spatial orientations probing into the structural preference of an enzymatic target, i.e. protein tyrosine phosphatase 1B (PTP1B). By employing regioselective protection and deprotection strategy, 2,6-, 3,4-, 4,6- and 2,3-di-O-propynyl 1-methoxy-O-glucosides were previously synthesized and then coupled with azido salicylate via click chemistry in forming the desired bidentate salicylic glucosides with high yields. The inhibitory assay of the obtained triazolyl derivatives leads to the identification of the 2,3-disubstituted salicylic 1-methoxy-O-glucoside as the structurally privileged PTP1B inhibitor among this bidentate compound series with micromole-ranged $IC_{50}$ value and reasonable selectivity over other homologous PTPs tested. In addition, docking simulation was conducted to propose a plausible binding mode of this authorized inhibitor with PTP1B. This research might furnish new insight toward the construction of structurally different bioactive compounds based on the monosaccharide scaffold.

Update on Phosphorylation-Mediated Brassinosteroid Signaling Pathways (단백질 인산화에 의해 매개되는 브라시노스테로이드 신호전달 연구의 최근 상황)

  • Lee, Yew;Kim, Soo-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.428-436
    • /
    • 2012
  • Protein phosphorylation is a universal mechanism that regulates cellular activities. The brassinosteroid (BR) signal transduction pathway is a relay of phosphorylation and dephosphorylation cascades. It starts with the BR-induced activation of the membrane receptor kinase brassinosteroid insensitive 1 (BRI1), resulting in the dephosphorylation of transcription factors such as BZR1/BES2 and BZR2/BES1 followed by BR-induced gene expression. Brassinosteroid signal transduction research has progressed rapidly by identifying the phosphorylation/dephosphorylation site(s) of the BR-regulated kinase and phosphatase substrates with a simultaneous pursuit of mutant phenotypes. Autophosphorylation, transphosphorylation, and serine/threonine and tyrosine phosphorylation of the receptor protein kinases BRI1 and BRI1-associated kinase (BAK1) have increased the understanding of the regulatory role of those kinases during physiological and developmental processes in plants. The phosphorylation event initiated by BR is also found in the regulation of receptor-mediated endocytosis and the subsequent degradation of the receptor. However, the basic molecular links of the BR signal transduction pathway are not well understood regarding this phosphorylation/dephosphorylation event. This review summarizes the current state of BR signal transduction research to uncover the phosphorylation/dephosphorylation networks and suggests directions for future research on steroid signal transduction to gain a more comprehensive understanding of the process.