• Title/Summary/Keyword: tyrosinase activity

Search Result 1,278, Processing Time 0.032 seconds

Effects of Ethyl Acetate Extract from Ulmus davidiana var. japonica on Melanogenesis (느릅나무의 에틸 아세테이트 추출물에 의한 Melanin생성 효과)

  • 천현자;정승일;김일광
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.724-729
    • /
    • 2001
  • Melanogenesis is a physiological process resulted in the synthesis of melanin pigments, which has a role in protecting skin front the damaging effect of ultra-violet (UV) radiation. The main aim of the present study was to examine the effect of Ulmus davidiana var. japonica(UL) on Melanogenesis. Cells were cultured in the presence of various concentrations of Ulmus davidiana var. japonica for 48 h, and there were estimated total melanin contents as a final product and activity of tyrosinase, a key enzyme, in Melanogenesis. Among the four solvent extracts tested, EtOAc extract mostly increased tyrosinase activity, And EtOAc extract increased the melanin contents and tyrosinase activity in a dose-dependent manner. Especially It was observed that 100$\mu\textrm{g}$/ml EtOAc extract promotes melanin secretion in B16/F10 melanoma cells by 140% at 48 h treatment and activity of tyrosinase increased by 180% in the presence of same concentration. In conclusion, as for EtOAc extract treatment, there was no effect on the viability of B16/F10 cell, only to stimulate Melanogenesis.

  • PDF

Effect of Radix Trichosanthis on the Melanogenesis (天花粉이 멜라닌형성에 미치는 影響)

  • Lee, Gwan-Sun;Kim, Jae-Ju;Song, Chae-Seok;O, Chun-Geun;Im, Gyu-Sang
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.14 no.1
    • /
    • pp.209-225
    • /
    • 2001
  • Recently many efforts were focused to understand the mechanical insights of melanogenesis to develop the agents for hyper-pigmentation and hypo-pigmentation. In the melanin biosynthetic pathway, tyrosinase is the rate limiting enzyme, and ${\alpha}$-melanocyte stimulating hormone(MSH) or cAMP-elevating agents stimulate melanogenesis and enhance the melanin synthesis and the tyrosinase activity. The author has analyzed the effects of Radix Trichosanthis on the basal melanogenic activities of B16/F10 mouse melanoma cells, and on the ${\alpha}$-MSH or forskolin-induced melanogenesis. Radix Trichosanthis alone markedly suppressed melanin content and tyrosinase activity in a dose-dependent manner. Pretreatment of the cells with Radix Trichosanthis also suppressed the increase of ${\alpha}$-MSH (10 nM) or forskolin (20${\mu}M$)-induced melanin content and tyrosinase activity. The decrease in the tyrosinase activity was paralled by a decrease in the abundance of tyrosinase protein and tyrosinase promoter activity. Pretreatment of the cells with Radix Trichosanthis also inhibited the increase of forskolin($20{\mu}M$) induced the amount of tyrosinase protein and tyrosinase promoter activity. The results of DOPA staining revealed that pretreatment of the cells with Radix Trichosanthis showed less intensity than B16 melanoma cells stimulated with ${\alpha}$- MSH or forskolin. These results suggest that Radix Trichosanthis inhibits melanogenesis and abrogates ${\alpha}-MSH and cAMP-induced melanogenesis in B16 melanoma cells.

  • PDF

Inhibitory Effect of Water Extract of Adenophorae Radix on the Melanogenesis (사삼 물 추출액의 멜라닌 형성 억제 효과)

  • Kang Hyun-sung;Lim Hong-jin;Park Min-chul;Lim Kyu-sang;Kim Nam-kwen
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.1
    • /
    • pp.82-93
    • /
    • 2004
  • Recently many efforts were focused to understanding the mechanical insights of melanogenesis to develop the agents for hyper-pigmentation and hypo-pigmentation. In the melanin biosynthetic pathway, tyrosinase is the rate limiting enzyme, and ${\alpha}$-melanocyte stimulating hormone(MSH) or cAMP-elevating agents stimulate melanogenesis and enhance the melanin synthesis and the tyrosinase activity. The author has analyzed the effects of Radix Trichosanthis on the basal Melanogenic activities of Bl6/F10 mouse melanoma cells, and on the ${\alpha}$-MSH or forskolin-induced melanogenesis. Radix Trichosanthis alone markedly suppressed melanin content and tyrosinase activity in a dose-dependent manner. Pretreatment of the cells with Radix Trichosanthis also suppressed the increase of ${\alpha}$-MSH(10 nM) or forskolin(20 ${\mu}$M)-induced melanin content and tyrosinase activity. The decrease in the tyrosinase activity was paralled by a decrease in the abundance of tyrosinase protein and tyrosinase promoter activity. Pretreatment of the cells with Radix Trichosanthis also inhibited the increase of forskolin(20 ${\mu}$M) induced the amount of tyrosinase protein and tyrosinase promoter activity. The results of DOPA staining revealed that pretreatment of the cells with Radix Trichosanthis showed less intensity than B16 melanoma cells stimulated with ${\alpha}$-MSH or forskolin. These results suggest that Radix Trichosanthis inhibits melanogenesis and abrogates ${\alpha}$-MSH and cAMP-induced melanogenesis in B16 melanoma cells.

  • PDF

Inhibitory Effect of Rhizoma Bletillae on Melanogenesis of B16 Melanoma Cell (白급이 B16 흑색종세포의 멜라닌 형성 억제에 미치는 영향)

  • Yoon, Hwa-jung;Yoon, Jung-won;Yoon, So-won;Ko, Woo-shin;Woo, Won-hong
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.16 no.3
    • /
    • pp.129-144
    • /
    • 2003
  • Recently many efforts were focused to understand the mechanical insights of melanogenesis to develop the agents for hyper-pigmentation and hypo-pigmentation. In the melanin biosynthetic pathway, tyrosinase is the rate limiting enzyme, and ${\alpha}$-melanocyte stimulating hormone(MSH) or cAMP-elevating agents stimulate melanogenesis and enhance the melanin synthesis and the tyrosinase activity. The author has analyzed the effects of Rhizoma Bletillae on the basal melanogenic activities of B16/F10 mouse melanoma cells, and on the ${\alpha}$-MSH or forskolin-induced melanogenesis. Rhizoma Bletillae alone markedly suppressed melanin content and tyrosinase activity in a dose-dependent manner. Pretreatment of the cells with Rhizoma Bletillae also suppressed the increase of ${\alpha}$-MSH (100 nM) or forskolin (20 ${\mu}M$)-induced melanin content and tyrosinase activity. The decrease in the tyrosinase activity was paralled by a decrease in the abundance of tyrosinase protein and tyrosinase promoter activity. Pretreatment of the cells with Rhizoma Bletillae also inhibited the increase of forskolin(20${\mu}M$) induced the amount of tyrosinase protein and tyrosinase promoter activity. The results of DOPA staining revealed that pretreatment of the cells with Rhizoma Bletillae showed less intensity than B16 melanoma cells stimulated with ${\alpha}$-MSH or forskolin. These results suggest that Rhizoma Bletillae inhibits melanogenesis and abrogates ${\alpha}$-MSH and cAMP-induced melanogenesis in B16 melanoma cells.

  • PDF

Tyrosinase Inhibitory Activity and Melanin Production Inhibitory Activity of Taraxinic Acid from Taraxacum coreanum (흰민들레(Taraxacum coreanum)에서 분리한 taraxinic acid의 tyrosinase 활성저해 및 melanin 생성저해 효과)

  • Park, Seung Il;Yoon, Hye Ryeon;Shin, Jun-Ho;Lee, Sung Joo;Kim, Do Yoon;Lee, Hwan Myung
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.368-376
    • /
    • 2021
  • This study was to investigate the Taraxinic acid from Taraxacum coreanum on tyrosinase activity and melanogenesis. In B16BL6 cell, Taraxinic acid did not show cytotoxicity even at concentrations of up to 100 ㎍/mL. In addition, tyrosinase inhibitory activity and melanogenesis inhibitory activity were confirmed by stimulation with α-melanocyte stimulating hormone (α-MSH) in the presence of taraxinic acid. Taraxinic acid was added to cells at concentrations of 10, 50 and 100 ㎍/mL and treated for 48 hours to confirm tyrosinase inhibitory activity and melanin production. The tyrosinase inhibitory activity increased in proportion to the amount of the sample, and showed an inhibitory activity of about 54.5% at a concentration of 50 ㎍/mL. Melanin production decreased in proportion to the sample amount, and it was about 62.2% at the concentration of 10 ㎍/mL. From the above results, it was found that Taraxinic acid had higher tyrosinase activity and melanin synthesis inhibitory activity in melanocyte than arbutin. The results suggest that Taraxinic acid can be utilized in natural whitening cosmetics.

Metal Ions' Effect on Activity of Pine Needle Tyrosinase (금속이온이 솔잎 tyrosinase의 활성에 미치는 영향)

  • Lee, Zong-Liong;Lee, Duk-Soo;Kim, Yil
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.157-165
    • /
    • 1998
  • The purpose of this study is to explain the relations between pine needle tyrosinase's activity and quantity of minerals in the Waters' mineral water. Pine needle tyrosinase's activity was measured by metal ions' concentration like Ca, Mg, Na, K, and Fe in different kinds of drinking water. 1. Pine needle tyrosinase has the highest activity when Ca's concentration is 14.40mg/L while the activity decreases by 92% when it is 108.10 mg/L. Therefore, the resonable range of Ca concentration for drinking water is 10-100.0 mg/L. 2. Mg has higher Pine needle tyrosinase's activity than Ca by three times. The reasonable range of Mg concentration for drinking water is 3.0-10.0 mg/L. 3. Pine needle tyrosinase has the highest activity when Na's concentration is 15.70 mg/L. The reasonable range of Na concentration for drinking water is less than 15 mg/L. 4. The activity increases as K concentration rises. In normal kinds of drinking water, K concentration is less than 10 mg/L. Since K has impacts on the activity only when its concentration is more than 10 mg/L, no problem in expected. 5. Fe has some impacts on the activity when its concentration is more than 10mg/L. As most kinds of drinking water contain less than 0.3 mg/L, no problem is expected. With above-mentioned observations, it is concluded that Water's mineral water contains reasonable levels of minerals like Ca, Mg, K and Na.

  • PDF

Tyrosinase Inhibitory Prenylated Flavonoids from Sophora flavescens

  • Kim, Soo-Jin;Son, Kun-Ho;Chang, Hyun-Wook;Kang, Sam-Sik;Kim, Hyun-Pyo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.151.2-151.2
    • /
    • 2003
  • For the purpose of the development of a skin-whitening agent, Sophora flavescens was evaluated for tyrosinase inhibitory activity and its active principles were identified followed activity-guided isolation. The ethanol extract and dichloromethane fraction from S. flavescens showed significant inhibition of mushroom tyrosinase. From the dichloromethane fraction, three known prenylated flavonoids, sophoraflavanone G, kuraridin, and kurarinone, were isolated. Compared with kojic acid ($IC_50$=20.5 $\mu$M), these compounds possessed more potent tyrosinase inhibitory activity. (omitted)

  • PDF

The Isolation of the Inhibitory Constitutents on Melanin Polymer Formation from the Leaves of Cercis chinensis (박태기나무의 잎으로부터 피부멜라닌 색소생성 억제성분의 분리)

  • Kim, So-Young;Kim, Jin-Joon;Jang, Tae-Soo;Chung, See-Ryun;Lee, Seung-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.4
    • /
    • pp.397-403
    • /
    • 1999
  • Tyrosinase plays an important role in the process of melanin polymer biosynthesis. Therefore, the enzyme inhibitors have been of great concern as cosmetics to have skin-whitening effects on the local hyperpigmentation. During the search for new inhibitory compounds on melanin polymer biosynthesis from natural sources, MeOH extracts of 589 higher plants were tested for the inhibitory effect on tyrosinase activity by the muschroom tyrosinase assay in vitro. Among plants tested, the leaves of Cercis chinensis exhibited potent inhibitory effect on mushroom tyrosinase activity. Subsequently seven active compounds were isolated from the ethyl acetate soluble part of acetone extract of the leaves of C. chinensis by the activity guided fractionation monitoring the inhibitory effect on tyrosinase activity. Their chemical structures were identified as $kaempferol-3-0-{\alpha}-L-rhamnoside$, quercitrin, $myricetin-3-0-{\alpha}-L-rhamnoside$, myricetin-3-0-(2'-O-galloyl)- ${\alpha}$ -L-rhamopyranoside (desmanthin), (-)-epicatechin-3-0-gallate, (-)-epigallocatechin-3-0-gallate, and methyl gallate on the basis of the speculation of spectral data and chemical reaction. Among the flavonol rhamnosides, myricetin-3-0-(2'-O-galloyl)- -L-rhamnoside(desmanthin) showed most potent inhibitory effect on tyrosinase activity and the structure of B-ring in flavonol moiety was related to the activity. (-)-Epigallocatechin-3-O-gallate having pyrogallol group in flavan-3-ol moiety exhibited more potent inhibitory effect than (-)-epicatechin-3-0-gallate having catechol group in flavan-3-ol moiety on mushroom tyrosinase activity.

  • PDF

Antioxidant and Tyrosinase Inhibitory Effects of Paeonia suffruticosa Water Extract (목단피 물 추출물의 항산화 및 Tyrosinase 억제효과)

  • You, Jin-Kyoun;Chung, Mi-Ja;Kim, Dae-Jung;Seo, Dong-Joo;Park, Jeong-Hae;Kim, Tae-Woo;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.292-296
    • /
    • 2009
  • Tyrosinase catalyzes melanin synthesis in skin melanocytes. The effects of Paeonia sufficinalis water extract (MDP) on antioxidant and tyrosinase activities have been studied in a cell-free system and mouse melanoma B16 cell. Radical scavenging activity of MDP was tested by DPPH assay and it showed high DPPH radical scavenging activity. The cellular tyrosinase activity was measured in mouse melanoma B16 cell by RT-PCR and enzyme activity. Treatment with MDP for 24 hr resulted in decreased tyrosinase mRNA level. Tyrosinase activity was decreased, compared with control, in cells exposed to MDP. Thus, Paeonia sufficinalis water extracts may be a candidate for cosmetic use.

Antimicrobial Effect, Antioxidant and Tyrosinase Inhibitory Activity of the Extract from Different Parts of Phytolacca americana L.

  • Boo, Hee-Ock;Park, Jeong-Hun;Woo, Sun-Hee;Park, Hyeon-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.366-373
    • /
    • 2015
  • This study was conducted to clarify the antimicrobial effect, antioxidant and tyrosinase inhibitory activities of the biological composition having the Phytolacca americana, and to enhance the natural materials utilization of foods and cosmetics. The antimicrobial activities of the different parts of P. americana were evaluated using the agar diffusion test. The antimicrobial activity of P. americana was relatively high in Malassezia furfur known as a skin fungi and Vibrio parahaemolyticus compared to Escherichia coli and Staphy-lococcus epidermidis. However, the antimicrobial activity in Vibrio parahaemolyticus did not show at all parts of P. americana. Both the DPPH radical scavenging activity and ABTS radical scavenging activity have been increased with the higher concentration of methanol extract. In particular, leaf extract of P. americana exhibited the highest activity both ABTS radical scavenging activity and DPPH radical scavenging activity. The nitrite scavenging activity was decreased when the pH was changed from pH 1.2 to pH 6.0. The highest nitrite scavenging activity was exhibited from the methanol extract of fruit, followed by root, stem, and leaf at pH 1.2. However, the nitrite scavenging activity at pH of 6.0 was not almost detected. All plant parts of P. americana showed tyrosinase inhibitory activity. The highest activity was found in the stem, and followed by root, leaf, and fruit in order. These tyrosinase inhibitory activity was progressively increased in a concentration-dependent manner. In this experiment on the methanol extracts of different organ from P. americana, we confirmed that the extract of P. americana showed potent tyrosinase inhibitory activity. Taken together, we conjectured that the P. americana had the potent biological activities, therefore this plant having various functional components could be a good material for development into source of natural food additives and cosmetics.