• Title/Summary/Keyword: tyrosinase activation

Search Result 71, Processing Time 0.02 seconds

The Roles of Hydroxyl Substituents in Tyrosinase Inhibitory Activation of Flavone Analogues (Flavone 유도체들의 Tyrosinase 저해활성화 반응에서 Hydroxyl 치환기들의 역할)

  • Park, Joon-Ho;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • Molecular docking of polyhydroxy substituted flavone analogues (1-25) as substrate molecules to the active site of tyrosinase (PDB ID: Deoxy-form (2ZMX) & Oxy-form (1WX2)) and Free-Wilson analysis were studied to understand the roles of hydroxyl substituents ($R_1-R_9$) in substrate molecules for the tyrosinase inhibitory activation. It is founded from Free-Wilson analysis that the $R_1$=hydroxyl among $R_1-R_9$ substituents had the strongest influence on the tyrosinase inhibitory activity. H-bonds between the hydroxyl substituents of substrate molecules and amino acid residues in the active site of tyrosinase were contributed to make a stable substrate-receptor complex compound. Particularly, it is proposed from the findings that the noncompetitive inhibitory activation would take place via H-bonding between peroxide oxygen (Per404) atom in the active site of tyrosinase and the hydroxyl substituents in substrate molecule.

Scutellaria baicalensis Georgi(SBG) inhibits Melanin Synthesis in Mouse B16 Melanoma Cells (α-MSH 유도성 멜라닌 합성에 있어서 황금 추출물의 역할과 작용기전 연구)

  • Hong, Sung-Jin;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.2
    • /
    • pp.104-117
    • /
    • 2009
  • Objective : Melanin is one of the most important facor in skin color. Melanin protects human skin from ultraviolet radiation otherwise it causes melanin pigmentation. So this experiment is carried out for test whether Scutellaria baicalensis Georgi(SBG) inhibits melanin synthesis and tyrosinase activity in mouse B16 melanoma cells. Method : The melanin synthesis inhibition effects of SBG were examined by in vitro melanin production assay. We assessed inhibitory effects of SBG on melanin contents from B16F1 melanoma cell, on tyrosinase activity(cell and cell free system), effect of SBG on the expression tyrosinase, Microphthalmia-associated Transcription Factor(MITF), Extracellular signal-regulated Kinase(ERK). Result : SBG inhibited melanin synthesis induced $\alpha$-MSH($\alpha$-Melanin Stimulating Hormone) in B16F1. SBG inhibited tyrosinase activity and expression. And SBG down-regulates MITF and stimulated ERK activation in B16F1. Conclusion : According to above results, SBG was improved its suppression effect to the inhibition of melanin synthesis, tyrosinase activation, and tyrosinase promotor activation. So SBG is considered to be used for an strong source of skin whitening effect.

  • PDF

The inhibitory effect on the melanin synthesis in B16/F10 mouse melanoma cells by Sasa quelpaertensis leaf extract (B16/F10 생쥐 흑색종 세포에서 제주조릿대 추출물의 멜라닌 합성 저해 효과)

  • Yoon, Hoon-Seok;Kim, Jeong-Kook;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.873-875
    • /
    • 2007
  • Effects of hot-water extract from Sasa quelpaertensis leaf (HWES) on melanogenesis were investigated in B16/F10 mouse melanoma cells. HWES inhibited cellular tyrosinase activity and melanin biosynthesis in a dose-dependent manner. Western blotting analysis showed that HWES dose-dependently inhibited tyrosinase and tyrosinase related protein-1 expression. Also, HWES suppressed sustained ERK activation in a concentration-dependent manner, suggesting that HWES inhibits the melanin biosynthesis through the suppressive effect against pathway involving sustained ERK activation.

Lincomycin induces melanogenesis through the activation of MITF via p38 MAPK, AKT, and PKA signaling pathways

  • Lee, Min Suk;Chung, You Chul;Moon, Seung-Hyun;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.323-331
    • /
    • 2021
  • Lincomycin is a lincosamide antibiotic isolated from the actinomycete Streptomyces lincolnensis. Moreover, it has been found to be effective against infections caused by Staphylococcus, Streptococcus, and Bacteroides fragillis. To identify the melanin-inducing properties of lincomycin, we used B16F10 melanoma cells in this study. The melanin content and intracellular tyrosinase activity in the cells were increased by lincomycin, without any cytotoxicity. Western blot analysis indicated that the protein expressions of tyrosinase, tyrosinase related protein 1 (TRP1) and TRP2 increased after lincomycin treatment. In addition, lincomycin enhanced the expression of master transcription regulator of melanogenesis, a microphthalmia-associated transcription factor (MITF). Lincomycin also increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and decreased the AKT phosphorylation. Moreover, the activation of tyrosinase activity by lincomycin was inhibited by the treatment with SB203580, which is p38 inhibitor. Furthermore, we also found that lincomycin-induced tyrosinase expression was reduced by H-89, a specific protein kinase A (PKA) inhibitor. These results indicate that lincomycin stimulate melanogenesis via MITF activation via p38 MAPK, AKT, and PKA signal pathways. Thus, lincomycin can potentially be used for treatment of hypopigmentation disorders.

The Branch Extracts of Vaccinium oldhamii Stimulate Melanin Synthesis Through Activation of Tyrosinase Activity in B16F10 Melanoma Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Park, Gwang Hun;Son, Ho-Jun;Eo, Hyun Ji;Song, Jeong Ho;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.95-95
    • /
    • 2018
  • In this study, we investigated the effect of branch extracts from Vaccinium oldhamii (VOB) on melanin synthesis in B16F10 cells. VOB promoted melanin production in absence or presence of ${\alpha}$-melanocyte-stimulating hormone (${\alpha}-MSH$) in B16F10 cells. However, VOB did not affect the expression of tyrosinase and TRP-1 associated with melanin synthesis at the mRNA and protein level in B16F10. But, VOB decreased TRP-2 protein level and induced tyrosinase activation in B16F10 cells. Inhibition of tyrosinase activity and tyrosinase knockdown attenuated VOB-mediated melanin synthesis. In conclusion, it is thought that VOB may stimulate melanin synthesis through activating tyrosinase activity.

  • PDF

Temperature Dependence of Activation and Inhibition of Mushroom Tyrosinase by Ethyl Xanthate

  • Alijanianzadeh, M.;Saboury, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.758-762
    • /
    • 2007
  • A new alkyldithiocarbonate (xanthate), as sodium salts, C2H5OCS2Na, was synthesized by the reaction between CS2 with ethyl alcohol in the presence of NaOH. The new xanthate was characterized by 1H NMR, IR and elemental analysis. Then, the new synthesized compound was examined for functional study of cresolase activity of Mushroom Tyrosinase (MT) from a commercial source of Agricus bisporus in 10 mM phosphate buffer pH 6.8, at three temperatures of 10, 20 and 33℃ using UV spectrophotemetry. 4-[(4-methylphenyl)- azo]-phenol (MePAPh) was used as a synthetic substrate for the enzyme for cresolase reaction. The results show that ethyl xanthate can activate or inhibit the cresolase activity of mushroom tyrosinase depending to the concentration of ethyl xanthate. It was concluded that the enzyme has two distinct sites for ethyl xanthate. The first one is a high-affinity activation site and the other is a low-affinity inhibition site. Activation of the enzyme in the low concentration of ethyl xanthate arises from increasing the affinity of binding for the substrate as well as increasing the enzyme catalytic constant. The affinity of ligand binding in the activation site is decreased by increasing of the temperature, which is the opposite result for the inhibition site. Hence, the nature of the interaction of ethyl xanthate is different in two distinct sites. The binding process for cresolase inhibition is only entropy driven, meanwhile the binding process for cresolase activation is not only entropy driven but also enthalpy driven means that hydrophobic interaction is more important in the inhibition site.

Anti-Melanogenic Activities of Ranunculus chinensis Bunge via ERK1/2-Mediated MITF Downregulation

  • Min-Jin Kim;Yong Tae Jeong;Buyng Su Hwang;Yong Hwang;Dae Won Jeong;Yeong Taek Oh
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.704-712
    • /
    • 2022
  • Research on whitening materials using natural alternatives is actively being conducted. The aim of this study was to investigate the in vitro inhibitory effects of Ranunculus chinensis Bunge (RCB) on melanogenesis and associated enzymes, such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in B16F10 murine melanoma cells. We found that RCB extract significantly attenuated melanin synthesis and reduced the activity of intracellular tyrosinase, a rate-limiting melanogenic enzyme. Western blot analysis showed that RCB extract decreased the protein expression of tyrosinase and TRP-1. In addition, it significantly decreased the expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanogenesis. Extracellular signal-regulated kinase (ERK) activation has been reported to be involved in the inhibition of melanogenesis. Thus, we investigated whether the hypopigmentary effects of RCB extract were related to the activation of ERK. RCB extract induced ERK phosphorylation in a dose-dependent manner. Furthermore, it markedly inhibited body pigmentation in a zebrafish model. Our results suggest that RCB extract inhibits melanogenesis by activating ERK pathway-mediated suppression of MITF and its downstream target genes, including tyrosinase. Therefore, RCB extract can be used as a whitening agent in the development of functional cosmetics.

Non-Essential Activation of Co2+ and Zn2+ on Mushroom Tyrosinase: Kinetic and Structural Stability

  • Gheibi, N.;Saboury, A.A.;Sarreshtehdari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1500-1506
    • /
    • 2011
  • Tyrosinase is a widespread enzyme with great promising capabilities. The Lineweaver-Burk plots of the catecholase reactions showed that the kinetics of mushroom tyrosinase (MT), activated by $Co^{2+}$ and $Zn^{2+}$ at different pHs (6, 7, 8 and 9) obeyed the non-essential activation mode. The binding of metal ions to the enzyme increases the maximum velocity of the enzyme due to an increase in the enzyme catalytic constant ($k_{cat}$). From the kinetic analysis, dissociation constants of the activator from the enzyme-metal ion complex ($K_a$) were obtained as $5{\times}10^4M^{-1}$ and $8.33{\times}10^3M^{-1}$ for $Co^{2+}$ and $Zn^{2+}$ at pH 9 and 6 respectively. The structural analysis of MT through circular dichroism (CD) and intensive fluorescence spectra revealed that the conformational stability of the enzyme in these pHs reaches its maximum value in the presence of each of the two metal ions.

Mechanism of Melanogenesis Inhibition by Melanoston Isolated from Yeast (효모에서 분리한 멜라닌 생성 억제 물질의 작용 기전)

  • Lee, Seung-Sun;Jung, Ho-Kwon;Oh, Chul;Choi, Tae-Boo
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.118-124
    • /
    • 2004
  • Melanocytes synthesize melanin within discrete organelle termed melanosomes which are transferred to the surrounding keratinocytes and can be produced in varying sizes, numbers and densities. Skin whitening products have become increasingly popular in the past few years. The most successful natural skin whitening agents are: Arbutin, Vitamin C, Kojic acid, Mulberry, which are all tyrosinase inhibitors. In this work, melanoston, a melanogenesis inhibitor isolated from yeast was studied to understand its mechanism of melanogenesis inhibition. It was found that melanoston was not a tyrosinase inhibitor, while when melanoston was applied to the B16 melanoma cell culture media, the intracellular tyrosinase activity was decreased by more than 30%, When B16 melanoma was stimulated with ${\alpha}$-MSH, cell morphololgy was dramatically changed to have lots of dendrites on the cell membrane surface. On the other hand, B16 was treated with ${\alpha}$-MSH and melanoston, simultaneously, the change of cell morphology was not so great. This inhibition effect of melanoston was found to be related to the inhibition of intracellular activation and transportation of tyrosinase, which was observed by immunostaining of B16 melanoma using anti-tyrosinase antibody. From these results, melanoston was regarded as an inhibitor to the differentiation of melanoma cells.

Inhibition of Melanoma Differentiation by Melanogenesis Inhibitor Isolated from Yeast (효모에서 분리한 멜라닌 생성 억제 물질의 세포분화 억제)

  • Choe Taeboo;Lee Seungsun;Jung Hokwon;Chul Oh
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.25-33
    • /
    • 2005
  • Melanocytes synthesize melanin within discrete organelle termed melanosomes which are transferred to the surrounding keratinocytes and can be produced in varying sizes, numbers and densities. Skin whitening products have become increasingly popular in the past few years. The most successful natural skin whitening agents are: arbutin, vitamin C, kojic acid, and mulberry, which are all tyrosinase inhibitors. In this work, melanoston, a melanogenesis inhibitor isolated from yeast was studied to understand its mechanism of melanogenesis inhibition. It was found that melanoston was not a tyrosinase inhibitor, while when melanoston was applied to the B16 melanoma cell culture media, the intracellular tyrosinase activity was decreased by more than $30\%$. When B16 melanoma was stimulated with $\alpha$-MSH, cell morphololgy was dramatically changed to have lots of dendrites on the cell membrane surface. On the other hand, B16 was treated with $\alpha$-MSH and melanoston, simultaneously, the change of cell morphologv was not so great. This inhibitory effect of melanoston was found to be related to the inhibition of intracellar activation and transportation of tyrosinase, which was observed by irmmunostaining of B16 melanoma using anti-tyrosinase antibody. From these results, melanoston was regarded as an inhibitor to the differentiation of melanoma cells.