• Title/Summary/Keyword: typhoon characteristics

Search Result 324, Processing Time 0.027 seconds

Estimation of Typhoon-induced Extreme Wind Speeds over Coastal region of Gyeongsangnam-do Province (경상남도 해안 지역에서의 태풍에 의한 극한 풍속 추정)

  • Lee, Young-Kyu;Lee, Sung-Su;Kim, Hak-Sun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.85-89
    • /
    • 2007
  • Data of the typhoon affecting Korean peninsula from 1951 to 2005 are obtained from the RSMC best track and six climatological characteristics of the typhoons are examined. Local wind speeds are obtained by the physical model for wind fields. Typhoons are generated by the Monte Carlo simulation and their wind speeds are distributed using Weibull CDF. Simulated typhoon wind speeds are used to obtain different wind speeds corresponding their mean recurrence intervals.

  • PDF

Characteristics of Monthly Maximum Wind Speed of Typhoons Affecting the Korean Peninsula - Typhoon RUSA, MAEMI, KOMPASU, and BOLAVEN - (한반도 영향 태풍의 월별 최대풍 특징과 사례 연구 - 태풍 루사·매미·곤파스·볼라벤을 대상으로 -)

  • Na, Hana;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.441-454
    • /
    • 2019
  • The present study analyzes the characteristics of 43 typhoons that affected the Korean Peninsula between 2002 and 2015. The analysis was based on 3-second gust measurements, which is the maximum wind speed relevant for typhoon disaster prevention, using a typhoon disaster prevention model. And the distribution and characteristics of the 3-second gusts of four typhoons, RUSA, MAEMI, KOMPASU, and BOLAVEN that caused great damage, were also analyzed. The analysis show that between May and October during which typhoons affected the Korean Peninsula, the month with the highest frequency was August(13 times), followed by July and September with 12 occurrences each. Furthermore, the 3-second gust was strongest at 21.2 m/s in September, followed by 19.6 m/s in August. These results show that the Korean Peninsula was most frequently affected by typhoons in August and September, and the 3-second gusts were also the strongest during these two months. Typhoons MAEMI and KOMPASU showed distribution of strong 3-second gusts in the right area of the typhoon path, whereas typhoons RUSA and BOLAVEN showed strong 3-second gusts over the entire Korean Peninsula. Moreover, 3-second gusts amount of the ratio of 0.7 % in case of RUSA, 0.8 % at MAEMI, 3.3 % at KOMPASU, and 21.8 % at BOLAVEN showed as "very strong", based on the typhoon intensity classification criteria of the Korea Meteorological Administration. Based on the results of this study, a database was built with the frequencies of the monthly typhoons and 3-second gust data for all typhoons that affected the Korean Peninsula, which could be used as the basic data for developing a typhoon disaster prevention system.

Dynamic characteristics monitoring of a 421-m-tall skyscraper during Typhoon Muifa using smartphone

  • Kang Zhou;Sha Bao;Lun-Hai Zhi;Feng Hu;Kang Xu;Zhen-Ru Shu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.451-460
    • /
    • 2023
  • Recently, the use of smartphones for structural health monitoring in civil engineering has drawn increasing attention due to their rapid development and popularization. In this study, the structural responses and dynamic characteristics of a 421-m-tall skyscraper during the landfall of Typhoon Muifa are monitored using an iPhone 13. The measured building acceleration responses are first corrected by the resampling technique since the sampling rate of smartphone-based measurement is unstable. Then, based on the corrected building acceleration, the wind-induced responses (i.e., along-wind and across-wind responses) are investigated and the serviceability performance of the skyscraper is assessed. Next, the amplitude-dependency and time-varying structural dynamic characteristics of the monitored supertall building during Typhoon Muifa are investigated by employing the random decrement technique and Bayesian spectral density approach. Moreover, the estimated results during Muifa are further compared with those of previous studies on the monitored building to discuss its long-term time-varying structural dynamic characteristics. The paper aims to demonstrate the applicability and effectiveness of smartphones for structural health monitoring of high-rise buildings.

A Study on the Calculation of Total Design Water Depth From Typhoon Waves (태풍파를 기준으로한 전설계수심의 산정에 관한 연구)

  • 이종우
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.3
    • /
    • pp.45-65
    • /
    • 1989
  • Various typhoon data near Yongil Bay, Korea from 1961 to 1985 were collected with some critria and analyzed with the help of the computer. Introducing the pressure profile models and predicting the typhoon wind and wave fields, the 100-year design wave parameters were calculated. Additionally, the wave data at the southeast coast of Korea were statistically analyzed. The deep water wave climate of this bay indicated that Typhoon Brenda, 1985 had wave characteristics of 100-year return period, Typhoon model and storm surge model studies were made for this typhoon. These, including other design parameters, were introduced into the calculation of total design water depth.

  • PDF

Study on Time and Spatial Distribution of Typhoon Storms (태풍성(颱風性) 강우(降雨)의 시공간(時空間) 분포(分布)에 관(關)한 연구(硏究))

  • Yoon, Kyung-Duck;Suh, Seung-Duk
    • Current Research on Agriculture and Life Sciences
    • /
    • v.15
    • /
    • pp.53-67
    • /
    • 1997
  • The objective of this study is to provide with the hydro-meteological and probabilistic characteristics of the storms of typhoons that have been passed through the Korean peninsula during the last twenty-three years since 1961. The paths and intensities of the typhoons were analyzed. Fifty weather stations were selected and the rainfall data during typhoon periods were collected. Rainfall data were analyzed for the patterns and probabilistic distributions. The results were presented to describe the areal distributions of probabilistic characteristics. The results obtained from this study can be summarized as follows: 1. The most frequent typhoon path that has passed through the Korean peninsula was type E, followed by types CWE, W, WE, and S. The most frequent typhoon intensity was type B, followed by A, super A, and e types, respectively. 2. The third quartile typhoon rainfall patterns appear most frequently followed by the second, first, and last quartiles, respectively, in Seoul, Pusan, Taegu, Kwangju and Taejon. The single typhoon rainfalls with long rainfall durations tended to show delayed type rainfall patterns predominantly compared to the single rainfalls with short rainfall durations. 3. The most frequent probabilistic distribution of typhoon rainfall event is Pearson type-III, followed by Two-parameter lognormal distribution, and Type-I extremal distribution. 4. The most frequent probability distribution model of seashore location was Pearson type-III distribution. The most frequent probability distribution model of inland location was two parameter lognormal distribution.

  • PDF

Time and Spatial Distribution of Probabilistic Typhoon Storms and Winds in Korean Peninsula (한반도에 내습한 태풍의 확률강우 및 풍속의 시공적 분포 특성)

  • 윤경덕;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.122-134
    • /
    • 1994
  • The objective of this study is to provide with the hydrometeological and probabilistic characteristics of the storms and winds of typhoons that have been passed through the Korea peninsula during the last twenty-three years since 1961. The paths and intensities of the typhoons were analyzed. Fifty weather stations were selected and the rainfall and wind data during typhoon periods were collected. Rainfall data were analyzed for the patterns and probabilistic distributions. The results were presented to describe the areal distributions of probabilistic characteristics. Wind data were also analysed for their probabilistic distributions. The results obtained from this study can be summarized as follows: 1. The most frequent typhoon path that have passed through the Korean peninsula was type E, which was followed by types CWE, W, WE, and S. The most frequent typhoon intensity was type B, that was followed by A, super A, and C types, respectively. 2. The third quartile typhoon rainfall patterns appear most frequently followed by the second, first, and quartiles, respectively, in Seoul, Pusan, Taegu, Kwangju and Taejon. The single typhoon rainfalls with long rainfall durations tended to show delayed type rainfall patterns predominantly compared to the single rainfalls with short rainfall durations. 3. The most frequent probabilistic distribution for typhoon rainfall event is Pearson type-III, followed by Two-parameter lognormal distribution, and Type-I extremal distribution. 4. The most frequent probability distribution model of seashore location was Pearson type-III distribution. The most frequent probability distribution model of inland location was two parameter lognormal distribution. 5. The most frequent probabilistic distribution for typhoon wind events was Type-I xtremal distribution, followed by Two-parameter lognormal distribution, and Normal distribution.

  • PDF

Wireless monitoring of typhoon-induced variation of dynamic characteristics of a cable-stayed bridge

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.293-314
    • /
    • 2015
  • In this paper, wireless monitoring of typhoon-induced variation of dynamic characteristics of a cable-stayed bridge is presented. Firstly, cable-stayed bridge with the wireless monitoring system is described. Wireless vibration sensor nodes are utilized to measure accelerations from bridge deck and stay cables. Also, modal analysis methods are selected to extract dynamic characteristics. Secondly, dynamic responses of the cable-stayed bridge under the attack of two typhoons are analyzed by estimating relationships between wind velocity and dynamic characteristics. Wind-induced variations of deck and cable vibration responses are examined based on the field measurements under the two consecutive typhoons, Bolaven and Tembin. Finally, time-varying analyses are performed to investigate non-stationary random properties of the dynamic responses under the typhoons.

Characteristics of Typhoon Jelawat Observed by OSMI, TRMM/PR and QuikSCAT

  • Lim, Hyo-Suk;Choi, Gi-Hyuk;Kim, Han-Dol
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.293-303
    • /
    • 2000
  • The typhoon Jelawat, which was formed over the tropical Pacific ocean on August 1, 2000 and made a landfall over China on August 10, 2000, was observed by Korea Multi-purpose Satellite (KOMPSAT-1) Ocean Scanning Multispectral Imager (OSMI), Tropical Rainfall Measuring Mission (TRMM)/Precipitation Radar(PR) and Quick Scatterometer (QuikSCAT). In spite of discontinuous observation, important mesoscale features of typhoon depending on life cycle were detected prominently. It is possible to distinguish on the OSMI photograph between the eye-wall convection and the stratiform and other convective clouds near the center of typhoon Jelawat. The TRMM/PR observations show quite clearly the eye-wall convection, stratiform regions, and convective bands. Vertical cross section of rainfall in the genesis stage of typhoon Jelawat exhibits circular ring of intense convection surrounding the eye. The mature stage of typhoon Jelawat consists of a strong rotational circulation with clouds which are well organized about a center of low pressure. The OSMI, TRMM/PR and QuikSCAT measurements presented here agree qualitatively with each other and provide a wealth of information on the structure of typhoon Jelawat.

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

Storm Surge Characteristics According to the Local Peculiarity in Gyeongnam Coast (경남연안의 지역특성에 따른 폭풍해일고의 변동)

  • Hur Dong-Soo;Yeom Gyeong-Seon;Kim Ji-Min;Kim Do-Sam;Bae Ki-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.45-53
    • /
    • 2006
  • Each year, the south coast of Korea is badly damaged from storm surge. The damages are greatly dependent upon the local peculiarities of the region where the storm surge occurs. So, in order to prevent/reduce recurrence of the disaster, it is very important to investigate the fluctuation characteristics of the storm surge height, related to the local peculiarities at each coastal area where occurrence of the disaster is expected. In this paper, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the Gyeongnam coast (southeast coast of Korea). Typhoons of Sarah (5914), Thelma (8705) and Maemi (0314), which caused terrible damage to the coastal area in the southeast coast of Korea in the past, were used forstorm surge simulations. Moreover, the storm surge due to virtual typhoons, which were combined the characteristics of each proposed typhoons (Maemi, Sarah, Thelma)with the travel route of other typhoon, was predicted. As expected, the results revealed that the storm surge heights are enhanced at the coastal regions with the concavity like a long-shaped bay. Also, the storm surge heights, due to each typhoon, were compared and discussed at major points along the Gyeongnam coast, related to the local peculiarities, as well as the characteristics and the travel route of typhoon.