• 제목/요약/키워드: type of heat exchanger

검색결과 563건 처리시간 0.034초

현장 열응답 시험을 통한 수직 밀폐형 지중열교환기의 성능 평가 (Evaluation of performance of closed-loop vertical ground heat exchanger by In-situ thermal response test)

  • 이철호;박문서;곽태훈;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.229-239
    • /
    • 2010
  • Performing a series of in-situ thermal response tests, the effective thermal conductivity of six vertical closed-loop ground heat exchangers was experimentally evaluated and compared each other, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than that of bentonite grouting, and the efficiency of graphite better performs over silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance.

  • PDF

착상시 설계인자에 따른 핀-관 열교환기의 성능변화에 관한 실험적 연구 (An Experimental Study on the Effects of Design Factors for the Performance of Fin-Tube Heat Exchanger Under Frosting Conditions)

  • 이관수
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2657-2666
    • /
    • 1995
  • In this study, the effects of design factors of finned-tube heat exchanger, such as fin spacing and fin array on the frost growth and heat exchanger performance are investigated under a frosting condition. The results show that the amount of frost, frost density and blockage ratio of air flow passage increase with decreasing fin spacing. Heat transfer rate increases momentarily at the initial stage of frosting and then decreases. After that heat transfer rate continues to increase again to reach a maximum value and then decreases dramatically. It is shown that the time required for heat transfer rate to reach a maximum value becomes shorter with decreasing fin spacing, and after a maximum value, heat transfer rate decreases very fast. The maximum allowable blockage ratio is introduced to determine the operation limit of a finned-tube heat exchanger operating under frosting condition and is obtained as a function of fin spacing. It is also shown that heat transfer rate of heat exchanger with staggered fin array increases about 17% and the amount of pressure drop of air increases about 1~2 mmH$_{2}$O, compared with those of in-line type heat exchanger under frosting condition.

다관형 순환유동층 열교환기의 유동 및 전열성능 예측모델 연구 (A Study on Prediction Model of Flow and Heat Transfer in the Circulating Fluidized Bed Heat Exchanger with Multiple Vertical Tubes)

  • 박상일
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1199-1204
    • /
    • 2006
  • The pressure drop and heat transfer coefficient were measured at room temperature in CFB heat exchanger with multiple vertical tubes. Also the circulation rate of solid particles was measured. The theoretical model for predicting heat transfer coefficient using the solid flowrate was developed in this study. The model predictions were compared with the measured heat transfer coefficient to show relatively good agreement.

  • PDF

지중열교환기의 지중열전도도 성능 분석 (Performance Analysis of Ground Thermal Conductivity by Ground Heat Exchanger)

  • 김영준;최재상;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.161-166
    • /
    • 2005
  • The objectives of this paper are to estimate the ground thermal conductivity by ground heat exchangers in two different places - Chooncheon and Wonjoo, and to analyze the effect of ground thermal conductivity on the ground thermal diffusivity and the size of the ground heat exchanger. In Chooncheon area, a single-U type HDPE pipe (25mm diameter) with borehole diameter of 150mm, length of 150m is installed. In Wonjoo area, a single-U type HDPE pipe (40mm diameter) with borehole diameter 150mm, length of 200m is installed. It is found that the ground thermal conductivities are estimated as 2.69 $W/m^{\circ}C$ and 2.99 $W/m^{\circ}C$ in Chooncheon and Wonjoo, respectively. It is also found that the ground heat exchanger size is reduced by 8.6% with 25% increase of ground thermal conductivity, and increase by 11.8% with 25% decrease of ground thermal conductivity.

  • PDF

저심도 저비용 유닛형 지중열교환기의 개발 (Development of low-cost, low-depth unit-type ground heat exchanger)

  • 오진환;남유진;채호병
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.166-167
    • /
    • 2014
  • Recently, in according to increase cognizance of energy and resources exhaustion, renewable energy system is received attention. In particular, ground heat pump system(GSHP) utilizing annually stable ground temperature for energy saving have been attracted in many buildings. However, GSHP system have disadvantage due to increase of initial installation and boring cost. In this study, in order to reduce the initial cost and to supply ground heat pump system into small scale house, an unit-type ground heat exchanger was developed.

  • PDF

해수 파울링이 판형 열교환기 성능에 미치는 영향에 대한 고찰 (Study on Effects of Seawater Fouling on a Plate-Frame Heat Exchanger)

  • 허재혁;이동원;김민휘;백원근;윤린
    • 설비공학논문집
    • /
    • 제29권8호
    • /
    • pp.391-400
    • /
    • 2017
  • Understanding of seawater fouling characteristics is critical in designing a heat exchanger adapted in an effluent utilization system for a power plant. We reviewed three types of fouling mechanisms of general, biological, and crystallizing for a plate-frame heat exchanger, to be used for heat exchanging with heated effluent from a power plant. Also, mathematical models for each type of seawater fouling were suggested. Actual thermal resistance calculated from seawater fouling models were compared and implemented in designing a plate-frame heat exchanger. The bio-fouling model revealed the largest thermal resistance and the highest number of plates for a plate-frame heat exchanger under the same heat load. Overall heat transfer coefficient and pressure drop of a plate-frame heat exchanger under fouling conditions was lower by 58 percent and higher by 2.85 times than those under clean conditions, respectively.

주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구 (Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel)

  • 김태용;이재용;김남진;김종보
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구 (Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery)

  • 안영태;이욱현;김정훈;김종수
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF

프레온 냉동장치의 과열도에 관한 성능 특성 연구 (열교환기 타입별 비교) (The Study on Performance Characteristics due to the Degree of Superheat in Freon Refrigerating System (The Comparison of Heat Exchanger Types))

  • 정송태;하경수;김양현;박찬수;하옥남;이승재
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.486-491
    • /
    • 2005
  • Nowadays heat exchangers that have been applied for freon refrigerating systems, a shell and tube type condenser, but because of their large size, large space for installation and more amount of refrigerants are needed. Therefore, in this study, we will find the most suitable operating condition through the comparison of performance between the shell & tube type and shell & disk type heat exchanger with R22. The experiments are carried out for the condensing pressure of refrigeration system from 1500kPa to 1600kPa and for the degree of superheat from 0 to $1^{\circ}C$ at each condensing pressure. As a result of experiment, if the shell & disk type heat exchanger is applied for R22 refrigerating systems, minimized input of refrigerants and space required for installation will be secured, which will have a great contribute to financial improvement for industry.

  • PDF

핀관 열교환기에서 확관율이 접촉열전달계수에 미치는 영향 (Effect of Expansion Ratio on Contact Heat Transfer Coefficient in Fin-Tube Heat Exchanger)

  • 이상무;박병덕
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.45-50
    • /
    • 2012
  • The plate fin and tube type of heat exchanger is widely used in air conditioner, and the heat exchanger is assembled by the mechanical expansion of copper tubes and fastening the aluminum fin. The objective of the present study is to investigate how the mechanical expansion of copper tube affects on the heat transfer performance of a plate fin and tube type heat exchanger. This study has been performed by experimental and numerical methods. The numerical and experimental results show that the tube expansion ratio has a influence on the heat transfer performance. Within the tested expansion ratio, the contact pressure shows the peak value and it decreases as the expansion ratio increases. Air-side heat transfer coefficient increases until the expansion ratio reaches 1.23, and then decreases with the similar pattern to the contact pressure. Also, contact heat transfer coefficient shows the maximum when the contact pressure is highest as well as the air-side heat transfer coefficient.