• Title/Summary/Keyword: two-way relay network

Search Result 62, Processing Time 0.022 seconds

Improving Physical-Layer Security for Full-duplex Radio aided Two-Way Relay Networks

  • Zhai, Shenghua;An, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.562-576
    • /
    • 2020
  • The power allocation optimization problem is investigated for improving the physical-layer security in two-way relaying networks, where a full-duplex relay based half-jamming protocol (HJP-FDR) is considered. Specially, by introducing a power splitter factor, HJP-FDR divides the relay's power into two parts: one for forwarding the sources' signals, the other for jamming. An optimization problem for power split factor is first developed, which is proved to be concave and closed-form solution is achieved. Moreover, we formulate a power allocation problem to determine the sources' power subject to the total power constraint. Applying the achieved closed-form solutions to the above-mentioned problems, a two-stage strategy is proposed to implement the overall power allocation. Simulation results highlight the effectiveness of our proposed algorithm and indicate the necessity of optimal power allocation.

A Spectral Efficient NOMA-based Two-Way Relaying Scheme for Wireless Networks with Two Relays

  • Li, Guosheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.365-382
    • /
    • 2021
  • This paper proposes a novel two-way relaying (TWR) approach for a two-relay wireless network based on non-orthogonal multiple access (NOMA), where two terminals exchange messages with a cellular base station (BS) via two intermediate relay stations (RSs). We propose a NOMA-based TWR approach with two relaying schemes, i.e., amplify-and-forward (AF) and decode-and-forward (DF), referred to as NOMA-AF and NOMA-DF. The sum-rate performance of our proposed NOMA-AF and NOMA-DF is analyzed. A closed-form sum-rate upper bound for the NOMA-AF is obtained, and the exact ergodic sum-rate of NOMA-DF is also derived. The asymptotic sum-rate of NOMA-AF and NOMA-DF is also analyzed. Simulation results show that the proposed scheme outperforms conventional orthogonal multiple access based transmission schemes. It is also shown that increasing the transmit power budget of the relays only cannot always improve the sum-rates.

Exact BER Analysis of Physical Layer Network Coding for Two-Way Relay Channels (물리 계층 네트워크 코딩을 이용한 양방향 중계 채널에서의 정확한 BER 분석)

  • Park, Moon-Seo;Choi, Il-Hwan;Ahn, Min-Ki;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.317-324
    • /
    • 2012
  • Physical layer network coding (PNC) was first introduce by Zhang et al. for two-way relay channels (TWRCs). By utilizing the PNC, we can complete two-way communications within two time slots, instead of three time slots required in non-PNC systems. Recently, the upper and lower bounds for a bit error rate (BER) of PNC have been analyzed for fading channels. In this paper, we derive an exact BER of the PNC for the TWRC over fading channels. We determine decision regions based on the nearest neighbor rule and partition them into several wedge areas to apply the Craig's polar coordinate form for computing the BER. We confirm that our derived analysis accurately matches with the simulation results.

Coded Cooperation Communication over Two-Way Relay Network (양 방향 중계 네트워크에서의 부호화 협력 통신)

  • Park, Ji-Hwan;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.24-29
    • /
    • 2011
  • Comparing conventional one-way relaying, two-way relaying scheme with network coding can achieve high throughput by reducing the transmission time. Coded cooperation protocol, which is a algorithm that uses coding on physical layer, can achieve high reliability. In this paper, we propose coded cooperation protocol over two-way relay network. Simulation results show proposed protocol has better performance in terms of reliability and throughput compare with conventional amplify and forward protocol. Also, with same throughput, proposed protocol has better performance in terms of reliability compare with the conventional hybrid decoded and forward protocol.

Performance of Network Coding with Best Relay Selection in Fading Channels (페이딩 채널에서 최선 릴레이 선택을 갖는 네트워크 코딩의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.193-200
    • /
    • 2013
  • Recently, network coding has been actively studied to increase the spectral efficiency of two-way relay wireless channels such as cellular systems as well as broadcasting systems. In this paper, we derive the average transmission capacity and the outage probability of a network coding system, which utilizes two-way data transmission via the best relay rather than multiple relays. Since the data unbalance between the forward and the reverse link in two-way communication systems exists, we include the asymmetric link as well as the symmetric link in the analysis. It is noticed that the space diversity gain increases as the increase of the number of relays. Also we obtain 11.4 dB signal-to-noise ratio (SNR) gain with 9 relays compared to that with single relay in symmetrical link at the given conditions. In asymmetrical links, we denotes that the outage probability is more sensitive to the number of relays rather than data unbalance between the links.

Rate-Aware Two-Way Relaying for Low-Cost Ship-to-Ship Communications (저비용 선박간 통신을 위한 전송률 인지 양방향 릴레이 기법)

  • Wang, Jinsoo;Kim, Sun Yong;Jeong, Min-A;Lee, Seong Ro;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.651-659
    • /
    • 2014
  • In this paper, we consider a two way relay network for ship-to-ship communications in a fleet, where two communicating ships exchange the information with the help of a multi-antenna relay ship. For the network, we propose a rate-aware three-phase analog network coding to improve the reliability of the information exchange with asymmetric rates. The proposed scheme allows low-complex implementation of the relay without channel estimation by generating an improved analog network coded signal with the orthogonally received signals from two ships by using only the received signal power at each antenna. In addition, the proposed scheme reduces outages in the data exchange at asymmetric rates by adopting a rate-aware relay power allocation, which is confirmed by evaluating the outage performance via simulation.

Exact Outage Probability of Two-Way Decode-and-Forward NOMA Scheme with Opportunistic Relay Selection

  • Huynh, Tan-Phuoc;Son, Pham Ngoc;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5862-5887
    • /
    • 2019
  • In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access (NOMA) technology. In this scheme, two sources transmit packets with each other under the assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The cooperative relays exploit successive interference cancellation (SIC) technique to decode sequentially the data packets from received summation signals, and then use the digital network coding (DNC) technique to encrypt received data from two sources. A max-min criterion of end-to-end signal-to-interference-plus-noise ratios (SINRs) is used to select a best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to achieve exact closed-form expressions and then, the system performance of the proposed TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results discover that the system performance of the proposed TWDFNOMA protocol is improved when compared with a conventional three-timeslot two-way relaying scheme using DNC (denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed TWDFNOMA protocol achieves best performances at two optimal locations of the best relay whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. Finally, the probability analyses are justified by executing Monte Carlo simulations.

Optimal Power Splitting for Wireless Energy and Information Transfer in Amplify-and-Forward Two-Way Relaying (증폭-후-전달 양방향 릴레이에서 무선 에너지 정보 전송을 위한 최적 전력 분할)

  • Do, Thinh Phu;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.175-177
    • /
    • 2016
  • This letter considers wireless energy and information transfer for an amplify-and-forward two-way relay network. When the relay harvests the energy and transfers the information signal through power splitting, the optimal power splitting minimizing the outage probability is derived explicitly and its gain is confirmed by simulations.

Individual Channel Estimation Based on Blind Interference Cancellation for Two-Way MIMO Relay Networks

  • He, Xianwen;Dou, Gaoqi;Gao, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3589-3605
    • /
    • 2018
  • In this paper, we investigate an individual channel estimation problem for multiple-input multiple-output (MIMO) two-way amplify-and-forward (AF) relay networks. To avoid self-interference during the estimation of the individual MIMO channels, a novel blind interference cancellation (BIC) approach is proposed based on an orthogonal preceding framework, where a pair of orthogonal precoding matrices is utilized at the source nodes. By designing an optimal decoding scheme, we propose to decompose the bidirectional transmission into a pair of unidirectional transmissions. Unlike most existing approaches, we make the practical assumption that the nonreciprocal MIMO channel and the mutual interference of multiple antennas are both taken into consideration. Under the precoding framework, we employ an orthogonal superimposed training strategy to obtain the individual MIMO channels. However, the AF strategy causes the noise at the terminal to be the sum of the local noise and the relay-propagated noise. To remove the relay-propagated noise during the estimation of the second-hop channel, a partial noise-nulling method is designed. We also derive a closed-form expression for the total mean square error (MSE) of the MIMO channel from which we compute the optimal power allocation. The simulation results demonstrate that the analytical and simulated curves match fully.

A Study on the Physical-Layer Network Coding in a Two-Way Relay Network with Multiple Antennas (다중 안테나 기반 양방향 중계 네트워크를 위한 물리계층 네트워크 코딩에 관한 연구)

  • Lim, Hyeonwoo;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.54-56
    • /
    • 2015
  • In this paper, we investigate a physical-layer network coding (PNC) in a two-way relay channel (TWRC) where two sources send and receive data with each other by help of a relay node with multiple antennas. We focus on the multiple-access phase of the TWRC in this paper. It is assumed that the source nodes do not know the wireless channel and the wireless channel independently varies in time, that is, fast fading environments. At the relay node, the channel is assumed to be perfectly known. The relay node utilizes the channel sate information and applies maximum likelihood ratio for detecting received signals. Through extensive simulations, it is shown that a bit error rate (BER) performance becomes improved as the number of antennas at the relay node increases.

  • PDF