• Title/Summary/Keyword: two-step polymerase chain reaction

Search Result 26, Processing Time 0.024 seconds

Arg243, Invariably Critical for the Transcriptional Activation of Yeast Gcn4p

  • Cho, Gyu-Chull;Lee, Jae-Yung;Kim, Joon
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.154-158
    • /
    • 1999
  • The arginine residue at position 243 (Arg 243) of the yeast transcription factor, Gcn4p, is invariably conserved among bZIP transcription factors. Using site-directed oligonucleotide saturation mutagenesis involving two-step polymerase chain reaction (PCR) amplification, random mutations were successfully introduced at the codon of 243 in the basic domain of Gcn4p. This mutant library was transformed ito Gcn4p defective yeast strain and selected for the transcriptionally active colonies. All colonies which were transcriptionally active had arginines in the codon 243. In this study, the strand preference by Taq polymerase during mutagenesis was also tested. Oligonucleotides were specially designed to test whether or not the polymerase was preferred using the strand as a template. A population of randomly mutated products were cloned into an appropriate vector and characterized by DNA sequencing analysis. Saturation mutagenesis which was performed efficiently by this method revealed a strong bias in terms of strand preference of Taq polymerase by an approximate ratio of 3 to 1 in this study.

  • PDF

Detection and Epidemiological Survey of Canine Parvoviral Enteritis by Polymerase Chain Reaction (Polymerase Chain Reaction을 이용한 Canine Parvovirus성장염의 진단과 역학조사)

  • Kim, Doo;Jang, Wook
    • Journal of Veterinary Clinics
    • /
    • v.14 no.2
    • /
    • pp.177-184
    • /
    • 1997
  • Canine parvovirus(CPV) is a very highly contagious virus causing hemorrhagic enteritis and myocarditis mainly in young dogs. The diseases were first recognized in 1978, and then spread throughout the world by 1980. The main source of the infection seems to be the feces of infected dogs, at the same time feces are suitable materials for detection of virus in the enteric form exactly for the same reasons. Recently, a new technique of in vitro DNA amplification, Known as the polymerase chain reaction (PCR), has been widely applied to clinical viral diagnosis because of its sensitivity, specificity and rapidity. In this research, we attemped to set up the PCR for the detection of CPV in fecal samples and conformed the canine parvpviral enteritis by PCR. To increase the sensitivity and specificity of a PCR, the nested PCR (two-step PCR) was performed. We also surveyed the contamination status of CPV in the research using fecal specimen was highly sensitive and specific. Of the 100 fecal specimens suspected canine parvoviral enteritis, 45 fecal specimens were positive in HA test, 64 fecal specimens were positive in the first PCR, and 87 fecal specimens were positive in the second PCR. CPV contamination status of animal clinics and breeding centers was serious, wo hygienic management of environment in which dogs are reared is required. The nested PCR described here seems to be a rapid, sensitive and specific for the detection of canine parvovirus.

  • PDF

A Simple Detection of Sweetpotato Feathery Mottle Virus by Reverse Transcription Polymerase Chain Reaction

  • Jeong Jae-Hun;Chakrabarty Debasis;Kim Young-Seon;Eun Jong-Seon;Choi Yong-Eui;Paek Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.83-86
    • /
    • 2003
  • A reverse transcription polymerase chain reaction (RT-PCR) protocol was developed using two specific 22-mer primers located in coat protein gene of SPFMV. A 411 bp PCR-product was detected in virus infected plants as well as tissue culture raised sweet potato but not in healthy plants. For optimization of RT-PCR protocol, the optimum crude nucleic acid concentration, annealing temperature, primer concentration and numbers of PCR-cycle for maximum sensitivity and specificity were determined. The optimum condition for RT-PCR was as follows: RT-PCR reaction mixture was one-step mixture, containing 50 pmol of primer, 30 units of reverse transcriptase, 5 units of RNasin, and the crude nucleic acid extracts (200 ng). In RT-PCR, cDNA was synthesized at $42^{\circ}C$ for 45 min before a quick incubation on ice after pre-denaturation at $95^{\circ}C$ for 5 min. The PCR reaction was carried out for 40 cycles at $96^{\circ}C$ for 30 see, $63^{\circ}C$ for 30 sec, $72^{\circ}C$ for 1 min, and finally at $72^{\circ}C$ for 10 min. The viral origin of the amplified product was confirmed by sequencing, with the sequence obtained having $95-98\%$ homology with published sequence data for SPFMV. The benefits of this RT-PCR based detection of SPFMV would be simple, rapid and specific.

Identification of Bovine Lymphocyte Antigen DRB3.2 Alleles in Iranian Golpayegani Cattle by DNA Test

  • Mosafer, J.;Nassiry, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1691-1695
    • /
    • 2005
  • The bovine lymphocyte antigen (BoLA)-DRB3 gene encodes cell surface glycoproteins that initiate immune responses by presenting processed antigenic peptides to CD4 T helper cells. DRB3 is the most polymorphic bovine MHC class II gene which encodes the peptide-binding groove. Since different alleles favour the binding of different peptides, DRB3 has been extensively evaluated as a candidate marker for associations with various bovine diseases and immunological traits. For that reason, the genetic diversity of the bovine class II DRB3 locus was investigated by polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). This study describes genetic variability in the BoLA-DRB3 in Iranian Golpayegani Cattle. Iranian Golpayegani Cows (n = 50) were genotyped for bovine lymphocyte antigen (BoLA)-DRB3.2 allele by polymerase chain reaction and restriction fragment length polymorphism method. Bovine DNA was isolated from aliquots of whole blood. A two-step polymerase chain reaction followed by digestion with restriction endonucleases RsaI, HaeIII and BstYI was conducted on the DNA from Iranian Golpayegani Cattle. In the Iranian Golpayegani herd studied, we identified 19 alleles.DRB3.2${\times}$16 had the highest allelic frequency (14%), followed by DRB3.2${\times}$7 (11%). Six alleles (DRB3.2${\times}$25, ${\times}$24, ${\times}$22, ${\times}$20, ${\times}$15, ${\times}$3) had frequencies = 2%. Although additional studies are required to confirm the present findings, our results indicate that exon 2 of the BoLA-DRB3 gene is highly polymorphic in Iranian Golpayegani Cattle.

Rapid Detection of H-RAS Point Mutation Using Two-Step Polymerase Chain Reaction-Restriction Fragment Length Polymorphism

  • Park, Young-Suk;Lee, Kyung-Ok;Chai, Young-Gyu
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.442-447
    • /
    • 1996
  • Mutations in codon 12, 13 and 61 of one of the three ras genes, H-ras, K-ras and N-ras, convert these genes into active oncogenes. The presence of H-ras gene mutations have important prognostic implications in various cancers. In this study, the H-ras gene mutations were investigated by two-step PCRRFLP in patients with bladder and stomach cancer. For the control experiments, T24 and SK2 cell lines were used. In a total of 36 bladder cancer patient cases, five (13.9%) mutations were found by this method. Of these, point 12 mutations were two (5.6%) cases and point 61 mutations were three (8.3%) cases. On the other hand, H-ras mutation was not found in 29 cases of stomach cancer. The results of the mutated H-ras gene confirmed by direct sequencing analysis were correlated well with PCR analysis. From the sensitivity test, the H-ras mutation was found to have about 0.2% of mutated DNA mingled in normal DNA. In conclusion, the H-ras mutation has a higher clinical Significance in bladder cancer than stomach cancer. Moreover the two-step PCR-RFLP method is sensitive, rapid and relatively simple for clinical work in detecting H-ras point mutations.

  • PDF

Establishment of multiplex RT-PCR for differentiation between rabies virus with and that without mutation at position 333 of glycoprotein

  • Yang, Dong-Kun;Kim, Ha-Hyun;Lee, Siu;Yoo, Jae-Young
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.22.1-22.9
    • /
    • 2020
  • Rabid raccoon dogs (Nyctereutes procyonoides koreensis) have been responsible for animal rabies in South Korea since the 1990s. A recombinant rabies vaccine strain, designated as ERAGS, was constructed for use as a bait vaccine. Therefore, new means of differentiating ERAGS from other rabies virus (RABV) strains will be required in biological manufacturing and diagnostic service centers. In this study, we designed two specific primer sets for differentiation between ERAGS and other RABVs based on mutation in the RABV glycoprotein gene. Polymerase chain reaction analysis of the glycoprotein gene revealed two DNA bands of 383 bp and 583 bp in the ERAGS strain but a single DNA band of 383 bp in the field strains. The detection limits of multiplex reverse transcription polymerase chain reaction (RT-PCR) were 80 and 8 FAID50/reaction for the ERAGS and Evelyn-Rokitnicki-Abelseth strains, respectively. No cross-reactions were detected in the non-RABV reference viruses, including canine distemper virus, parvovirus, canine adenovirus type 1 and 2, and parainfluenza virus. The results of multiplex RT-PCR were 100% consistent with those of the fluorescent antibody test. Therefore, one-step multiplex RT-PCR is likely useful for differentiation between RABVs with and those without mutation at position 333 of the RABV glycoprotein gene.

A survey of viruses and viroids in astringent persimmon (Diospyros kaki Thunb.) and the development of a one-step multiplex reverse transcription-polymerase chain reaction assay for the identification of pathogens

  • Kwon, Boram;Lee, Hong-Kyu;Yang, Hee-Ji;Kim, So-Yeon;Lee, Da-Som;An, ChanHoon;Kim, Tae-Dong;Park, Chung Youl;Lee, Su-Heon
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.193-206
    • /
    • 2022
  • Astringent persimmon (Diospyros kaki Thunb.) is an important fruit crop in Korea; it possesses significant medicinal potential. However, knowledge regarding the pathogens affecting this crop, particularly, viruses and viroids, is limited. In the present study, reverse transcription-polymerase chain reaction (RT-PCR) and high-throughput transcriptome sequencing (HTS) were used to investigate the viruses and viroids infecting astringent persimmons cultivated in Korea. A one-step multiplex RT-PCR (mRT-PCR) method for the simultaneous detection of the pathogens was developed by designing species-specific primers and selecting the primer pairs via combination and detection limit testing. Seven of the sixteen cultivars tested were found to be infection-free. The RT-PCR and HTS analyses identified two viruses and one viroid in the infected samples (n = 51/100 samples collected from 16 cultivars). The incidence of single infections (n = 39/51) was higher than that of mixed infections (n = 12/51); the infection rate of the Persimmon cryptic virus was the highest (n = 31/39). Comparison of the monoplex and mRT-PCR results using randomly selected samples confirmed the efficiency of mRT-PCR for the identification of pathogens. Collectively, the present study provides useful resources for developing disease-free seedlings; further, the developed mRT-PCR method can be extended to investigate pathogens in other woody plants.

Molecular Cloning And analysis of Korean Insulin Gene (한국인 인슈린 유전자의 클로닝 및 분석)

  • 김형민;한상수;고건일;손동환;전창덕;정헌택;김재백
    • YAKHAK HOEJI
    • /
    • v.37 no.5
    • /
    • pp.504-510
    • /
    • 1993
  • Human insulin gene is consisted of the polymorphic region with the repeating units, the regulatory sequence, the structural gene including the intervening sequence, and 3'-flanking region. The polymerase chain reaction, which amplifies the target DNA between two specific primers, has been performed for the amplification of human insulin gene and simple one-step cloning of it into Escherichia coli. Out of 1727 nuceotides compared, only 4 sites were variable: 5'-regulatory region(G2101$\rightarrow$AGG); IVS I(T2401$\rightarrow$A); Exon II(C2411 deletion); IVS II(A2740 dejection). The variations at the G2101 and T2401 were the same as those found in one American allele. The other two variations were observed only in the specific Korean allele. And, the enzyme digestion patterns among normal, insulin dependent diabetes mellitus, and non-insulin dependent diabetes mellitus were the same. On the other hand, PCR method showed the possibility of the quickaccess for the polymorphic region in terms of the restriction fragment length of polymorphism.

  • PDF

Fed-batch Culture of Recombinant E.coli for the Production of Penicillin G Amidase (Penicillin G Amidase생산을 위한 재조합 대장균의 유가배양에 관한 연구)

  • Lee, Sang-Mahn
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.314-319
    • /
    • 2008
  • Penicillin G amidase (PGA, benzylpenicillinaminohydrolase, EC 3.5.1.11) is industrially important enzyme which converts penicillin G to 6-aminopenicillanic acid (6-APA) and phenylacetic acid (PAA). The PGA in E. coli ATCC 11105 is secreted into the periplasm after removing signal sequences and becomes heterodimer which composed of two subunits, small subunit (24 kDa) and large subunit (65 kDa). In this study, the PGA gene was obtained from E. coli ATCC 11105 using PCR (polymerase chain reaction) technique. The active PGA was successfully secreated into periplasm in E. coli BL2 1(DE3) harboring pET-pga plasmid. The optimized fed-batch fermentation, consisting of a three-step shift of culture temperature from $37^{\circ}C$ to $22^{\circ}C$, gave a productivity of 19.6 U/mL with a cell growth of 62 O.D. at 600 nm.

Relation between RASSF1A Methylation and BRAF Mutation in Thyroid Tumor (갑상선 종양에서 RASSF1A 메틸화와 BRAF 유전자 변이에 관한 연구)

  • Oh, Kyoung Ho;Jung, Kwang Yoon;Baek, Seung Kuk;Woo, Jeong Soo;Cho, Jae Gu;Kwon, Soon Young
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.123-129
    • /
    • 2018
  • Background and Objectives: Hypermethylation of the tumor suppressor gene RASSF1A and activating mutation of BRAF gene have been recently reported in thyroid cancers. To investigate the role of these two epigenetic and genetic alterations in thyroid tumor progression, methylation of RASSF1A and BRAF mutation were examined in thyroid tumors. Materials and Methods: During 2007 to 2017, 69 papillary carcinomas, 18 nodular hyperplasia, 3 follicular carcinomas, and 13 follicular adenomas were selected. The methylation-specific polymerase chain reaction (MSP) technique was used in detecting RASSF1A methylation and polymerase chain reaction (PCR)-single-stranded conformation polymorphism and sequencing were used for BRAF gene mutation study. Results: The hypermethylation of the RASSF1A gene was found in 84.6%, 100% and 57.9% of follicular adenomas, follicular carcinomas, and papillary carcinomas, respectively. Nodular hyperplasia showed a hypermethylation in 33.3%. The BRAF mutation at V600E was found in 60.7% of papillary carcinoma and 27.0% of nodular hyperplasia, but none of follicular neoplasms. The BRAF mutation was correlated with the lymph node metastasis and MACIS clinical stage. There is an inverse correlation between RASSF1A methylation and BRAF mutation in thyroid lesions. Conclusion: Epigenetic inactivation of RASSF1A through aberrant methylation is considered to be an early step in thyroid tumorigenesis, and the BRAF mutation plays an important role in the carcinogenesis of papillary carcinoma, providing a genetic marker.