• 제목/요약/키워드: two-stage experimental design

검색결과 193건 처리시간 0.025초

다수목적을 위한 2단계 실험 (Two-Stage Experimental Design for Multiple Objectives)

  • 장대흥;김영일
    • 응용통계연구
    • /
    • 제28권1호
    • /
    • pp.93-102
    • /
    • 2015
  • D-최적 등을 위시한 최적실험은 비선형모형인 경우 추정을 하여야할 모수에 의존하는 문제점이 존재한다. 따라서 기본적으로 문헌에서는 모수추정을 위해서는 순차실험을 제안한다. 본 연구에서는 2단계 실험설계를 모수추정의 사례를 포함한 다양한 환경 하에서의 사용방법을 알아보았다. 본 연구에서 제안한 내용은 단계의 수나 구체적인 실험기준의 숫자에 상관없이 적용되는 범용적인 기준이다. 본 연구는 2단계 실험에서 3개 이상의 실험목적을 가지고 있는 경우 하이브리드(hybrid)방법을 제안하였다. 모든 실험은 근사실험설계의 형태로 논의되었다.

고성능 2단 축류송풍기의 공력설계를 위한 수치해석 및 실험에 관한 연구 (A Numerical Method & Experiments for the Aerodynamic Design of High Performance 2-Stage Axial Flow Fans)

  • 조진수;한철희;조이상
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.1048-1062
    • /
    • 1999
  • A numerical method and experiments for the aerodynamic design of high performance two-stage axial flow fans was carried out. A vortex ring element method used for the aerodynamic analysis of the propellers was extended to the fan-duct system. Fan Performance and velocity profiles at the fan inlet and outlet are compared with experimental data for the validations of numerical method. Performance test was done based on KS B 6311(testing methods for turbo-fans and blowers). The velocity profile was obtained using a 5-hole pitot tube by the non-nulling method. The two stage axial flow fan configurations for the optimal operation conditions were set by using the experimental results for the single rotating axial flow fan and the single stage axial flow fan. The single rotating axial flow fan showed relatively low efficiency due to the swirl velocities behind rotor exit which produced pressure losses. In contrast, the single stage and the two-stage axial flow fans showed performance improvements due to the swirl velocity reduction by the stator. The peak efficiency of the two stage axial flow fan was improved by 21% and 6%, compared to the single rotating axial flow fan and the single stage axial flow fan, respectively.

Experimental Study on a GM-type Two-Stage Pulse Tube Refrigerator for Cryopump Applications

  • Lee, S.J.;Hong, Y.J.;Park, S.J.;Kim, H.B.;Kwon, S.B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권2호
    • /
    • pp.35-38
    • /
    • 2007
  • A single-stage and two-stage pulse tube refrigerators have been designed for cryopump application. The different diameters of pulse tube and regenerator have been investigated at single-stage pulse tube refrigerator(PTR). Experiments have been performed on single-stage PTR to reach minimum temperature with optimum valve opening at a few frequencies. And the two-stage pulse tube refrigerators have been assembled with tested single-stage pulse tube and tested. When orifice turn is opened to 9 and double inlet is opened to 3 at a single-stage, the lowest temperature of 33.7 K is achieved. The cooling capacity at single-stage is 38 W at temperature of 80 K. A two-stage pulse tube refrigerator has 16.3K at the second stage and 59.7K at the first stage. The cooling capacity achieved is 16.5 W at 80 K, the first stage and 0.6 W at 20 K, the second stage. Some details on the design of pulse tube refrigerator and the experimental apparatus are given.

Nonlinear Representation of Two-Stage Power-Factor-Correction AC/DC Circuits

  • Orabi Mohamed;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.197-204
    • /
    • 2004
  • Two-stage Power-Factor-Correction (PFC) converters are the most common circuits for drawing sinusoidal and in phase current waveforms from an ac source with a good regulated output voltage. The first stage is a boost PFC converter with average-current-mode control for achieving the near-unity power factor and the second stage is a forward converter with voltage-mode control to regulate the output voltage. Stability analysis and design methods of two-stage PFC converters have previously been discussed using linear models. Recently, new nonlinear phenomena have been detected in pre-regulator boost PFC circuits and a new nonlinear model has been proposed for pre-regulated PFC converters. Therefore, investigation of two-stage PFC converters from the nonlinear viewpoint becomes important because the second stage DC/DC converter adds more complexity to the circuit. So, this paper introduces a study of the stability of two-stage PFC converters. A novel nonlinear model of two-stage PFC converters is proposed. Then, a stability analysis is made based upon this nonlinear model. The high correspondence between the simulated and experimental results confirms our analysis.

다단계 디프드로잉가공에서의 소재형상설계 및 성형성 (The blank design and the formability for the multi-stage deep drawing process)

  • 박민호;김상진;서대교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.111-118
    • /
    • 1995
  • A method of determining an optimum blank shape for the non circular deep drawing process is more investigated and applied to the balnk design for multi-stage deep drawn product. The forming procedure of two-stage deep drawing process is looked over and the method of determining a blank shape is proposed. In experimental research, a optimum blank and a optional rectangular blank were considered and we measured thickness strain distributions. We could predict a strain distribution and compare with a experimental strain distribution. Also, the strain distributions for the blank shapes, optimum and rectangular, were compared.

  • PDF

Min-Max 알고리즘을 이용한 피에조 구동형 스테이지의 최적설계 및 성능평가 (Optimal Design and Performance Evaluation of PZT-driven Stage Using Min-Max Algorithm)

  • 최기봉;한창수
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.130-136
    • /
    • 2005
  • This paper presents an optimal design and the performance evaluation of two-axis nano positioning stage with round notched flexure hinges. A flexure hinge mechanism with round notched flexure hinges is to guide the linear motions of a moving plate in the nano positioning stage. A Min-Max algorithm is applied to the design of the flexure hinge mechanism for nano positioning stage. In the design process, the structure of the flexure hinge mechanism is fixed, then the radius of a round hole and the width of two round holes are chosen as design variables, and finally the do sign variables are calculated by the Min-Max algorithm. The machined flexure hinge mechanism, stack type PZTs for actuation and capacitance type displacement sensors for position measurement are assembled into the nano positioning stage. The experimental results of the manufactured nano positioning stage show the first modal resonance frequency of 197 Hz, the operating range of 40 um, and the resolution of 3 nm.

배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법 (Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System)

  • 현동엽;정석언;현동석
    • 전력전자학회논문지
    • /
    • 제19권5호
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Deflective Behavior of Charged Particles in a Two-Stage Electrostatic Precipitator

  • Lim, Hun-Chan
    • 조명전기설비학회논문지
    • /
    • 제25권7호
    • /
    • pp.83-91
    • /
    • 2011
  • Even if smoke, fumes, mist or dust particles are removed by electrostatic precipitators (ESPs), the occurrence of ozone, which is harmful to human body, has to be severely restricted in the indoor environments of hospitals, offices, and workshops. Therefore, the two-stage ESP generating positive corona at the ionizer is typically used because it creates less ozone than the two-stage ESP generating negative corona at the ionizer. In order to predict the collection performance and the optimal design of the two-stage ESP applied to positive high-voltage, particle concentration is experimentally investigated in this paper. In addition, particle motion within the collector section is also numerically analyzed. The positive corona discharge current of the ionizer is found to be affected by the applied voltage in the collector section but less so by the particle concentration. Particle concentration shows a minimum near the high voltage electrode of the collector section. The minimum value of the collection efficiency is almost proportional to gas velocity. When the collector length decreases, the minimum value of the collection efficiency increases. Charged particles entering the collector region are linearly deflected towards the grounded plate by an electric field. From the above experimental and numerical results, two empirical equations on the concentration ratio and the collection efficiency are derived, and are in good agreement with the experimental data.

3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계 (Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage)

  • 김정현
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.

A Second-order Harmonic Current Reduction with a Fast Dynamic Response for a Two-stage Single-phase Grid-connected Inverter

  • Jung, Hong-Ju;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1988-1994
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a DC/DC converter and a DC/AC converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains second-order frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new second-order harmonic current reduction scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.