• Title/Summary/Keyword: two-stage concrete

Search Result 179, Processing Time 0.025 seconds

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

An Experimental Study on the Behaviour of Tunnel Excavated in a Homogeneous Ground by Two-Stage Excavation (균질지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적 연구)

  • 김동갑;박승준;이상덕
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2004
  • In a shotcrete support system, the cooperation of the ground and the shotcrete lining makes it possible to transfer the shear stress to the shotcrete lining, which is dedicated to form a stable structure. In this study, a homogeneous model ground with constant strength was produced by using gypsum and the tunnel was excavated with a top heading method under the definite initial stress. During the excavation, the stress in the ground around the tunnel and the deformation of shotcrete lining were measured, The tensile stress was generated in tangential direction in the ground near the tunnel and in the shotcrete lining due to tunnel excavation. This shows the unified behavior of the ground and shotcrete lining, which is the most typical characteristic of the shotcrete support. As a result, the rates of in-situ stress during the excavation at a top boundary line was 9% and at top arch heading 15%. It was 48% right after excavating the heading and 94% before cutting the bench.

Imaging of Ground Penetrating Radar Data Using 3-D Kirchhoff Migration (3차원 Kirchhoff 구조보정을 이용한 지표레이다자료의 영상화)

  • Cho, Dong-Ki;Suh, Jung-Hee;Choi, Yoon-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.185-192
    • /
    • 2002
  • We made a study of 3-D migration which could precisely image data of GPR (Ground Penetrating Radar) applied to NDT (Non-Destructive Test) field for the inspection of structural safety. In this study, we obtained 3-D migrated images of important targets in structuresurvey (e.g. steel pipes, cracks) by using 3-D Kirchhoff prestack depth migration scheme developed for seismic data processing. For a concrete model consisting of steel pipe and void, the targets have been well defined with opposite amplitude according to the parameters of the targets. And migrated images using Parallel-Broadside array (XX configuration) have shown higher resolution than those using Perpendicular-Broadside array (YY configuration) when steel pipes had different sizes. Therefore, it is required to analyze the migrated image of XX configuration as well as that of general YY configuration in order to get more accurate information. As the last stage, we chose a model including two steel pipes which cross each other. The upper pipe has been resolved clearly but the lower has been imaged bigger than the model size due to the high conductivity of the upper steel.

A Study on Instrumentalization in van Hiele's Geometric Teaching Using GeoGebra (GeoGebra 를 활용한 반힐레 기하교수법에서 도구화에 관한 연구)

  • Lim, Hyun Jung;Choi-Koh, S.S
    • Communications of Mathematical Education
    • /
    • v.30 no.4
    • /
    • pp.435-452
    • /
    • 2016
  • This study was designed to explore students' instrumentalization in relation to the van Hiele's teaching method within a technology environment using GeoGebra. To carry out the study, a total of 4 lesson units was developed based on van Hiele teaching method for two slow learners in Gyeonggi province, Korea. The results of study were as follows. Instrumentalization of students was actualized from preparation, to adaptation, and to application stages. In preparation, and adaptation stages, depending on visualization, students used a trial-and-error method a lot, however in application stage the role of GeoGebra was just to check the solution of what they conjectured. Therefore, a teacher should prepare geometric tasks according to the processes of instrumentalization based on geometric teaching method. During instrumentalization and instrumentation of users, usage scheme(US) and instrumented action scheme(IAS) should be concrete.

Mechanistic-Empirical Guideline for Routine Overweight Truck Traffic Routes (과하중 트럭 운행 도로에 대한 역학적-경험적 지침)

  • Oh, Jeongho
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • The main objective of this research is to develop the Mechanistic-Empirical (M-E) guidelines for evaluating the capacity of existing highways to sustain route overweight truck traffic over a specified performance period due to a growing concern on the impact of increasing overweight truck loads on highways. In this study, a two-stage framework was developed for this purpose. Level I procedure involves the use of pavement evaluation charts to identify the best possible route from among the alternatives considered and to determine what additional tests and analyses are needed as a screening tool. Level II involves the application of the Overweight Truck Route Analysis (OTRA) program to evaluate the structural adequacy of an existing route to carry routine overweight truck traffic over the specified performance period along with estimating asphalt concrete overlay thickness, if necessary.

Structural monitoring and analyses on the stability and health of a damaged railway tunnel

  • Zhao, Yiding;Yang, Junsheng;Zhang, Yongxing;Yi, Zhou
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.375-386
    • /
    • 2021
  • In this paper, a study of stability and health of a newly-built railway tunnel is presented. The field test was implemented to monitor the secondary lining due to the significant cracking behaviors influenced the stability and health of the tunnel structure. Surface strain gauges were installed for monitoring the status of crack openings, and the monitoring outputs demonstrated that the cracks were still in the developing stage. Additionally, adjacent tunnel and poor condition of surrounding rock were identified as the causes of the lining cracking by systematically characterizing the crack spatial distribution, tunnel site and surrounding rock conditions. Reconstruction of partial lining and reconstruction of the whole secondary lining were designed as the maintenance projects for different cracking regions based on the construction feasibility. For assessing the health conditions of the reinforced lining, embedded strain gauges were set up to continuously measure the strain and the internal force of the reconstructed structures. For the partially reconstructed lining, the outputs show the maximum tensile elongation is 0.018 mm during 227 days, which means the structure has no obvious deformation after maintenance. The one-year monitoring of full-section was implemented in the other two completely reconstructed cross-sections by embedded strain gauge. The outputs show the reconstructed secondary lining has undertaken the pressure of surrounding rock with the time passing. According to the calculated compressive and tensile safety factors, the completely reconstructed lining has been in reliable and safe condition during the past year after reinforcement. It can conclude that the aforementioned maintenance projects can effectively ensure the stability and health of this tunnel.

Study of compressive behavior of triple joints using experimental test and numerical simulation

  • Sarfarazi, Vahab;Wang, Xiao;Nesari, Mojtaba;Ghalam, Erfan Zarrin
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.49-62
    • /
    • 2022
  • Experimental and discrete element methods were used to investigate the effects of triple joints lengths and triple joint angle on the failure behavior of rock mass under uniaxial compressive test. Concrete samples with dimension of 20 cm × 20 cm × 5 cm were prepared. Within the specimen, three imbedded joint were provided. The joint lengths were 2 cm, 4cm and 6 cm. In constant joint lengths, the angle between middle joint and other joints were 30°, 60°, 90°, 120° and 150°. Totally 15 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, the models containing triple joints, length and joint angle are similar to the experiments, were numerical by Particle flow code in two dimensions (PFC2D). Loading rate in numerical modelling was 0.05 mm/min. Tensile strength of material was 1 MPa. The results show that the failure behaviors of rock samples containing triple joints were governed by both of the angle and the length of the triple joints. The uniaxial compressive strengths (UCS) of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behavior of discontinuities is related to the number of the induced tensile cracks which are increased by decreasing the joint length. Along with the damage failure of the samples, the acoustic emission (AE) activities are excited. There were only a few AE hits in the initial stage of loading, then AE hits rapidly grow before the applied stress reached its peak. In addition, every stress drop was accompanied by a large number of AE hits. Finally, the failure pattern and failure strength are similar in both methods i.e., the experimental testing and the numerical simulation methods.

A Study on the Characteristics of Dynamic Behaviors for Continuous PSC Girder Bridges with Integral Pier Cap (교각일체형 연속 PSC 거더교의 동적거동 특성 연구)

  • Jeong, Young Do;Koo, Min Se;Yi, Seong Tae;Kim, Hee Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.94-105
    • /
    • 2013
  • Recently, the construction industry has been changed in such a way that the cost for bridge construction should be optimized or reduced. Therefore, bridges are required be cost-effective in terms of initial construction as well as in the maintenance during service stage. In order to reduce the cost for bridge construction, the Rahmen typed structure, in which the bridge components from superstructure to substructure are integral, has many advantages to reduce the size of structural members including girders, since the loadings from superstructure may be transferred to substructure through the connecting rebars such as stud, etc. This paper studied on the continuous Up and Down Prestressed Concrete (UD PSC) girder bridge in which the reinforced concrete pier cap is integral with the part of girders in superstructure. In previous studies, it is known that the structural behavior of continuous UD PSC girder bridge is quite different compared to the one of the bridges with conventional bearings or shoes to support the loading from girders. Nevertheless, it has hardly been studied about the structural behavior of bridge with UD PSC girder. Therefore, in this study, various dynamic behaviors of continuous UD PSC girder bridge with integral pier cap have been analyzed using numerical method. Furthermore, an equation to evaluate the impact factor is suggested for the UD PSC girder bridge which has two to three continuous spans.

Design of Sedimentary Rock Slopes in River Diversion Works (가배수로 터널공사의 퇴적암 사면 안정화 설계)

  • Jee, Wang-Ruel
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.17-32
    • /
    • 1998
  • The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia, The power station will consist of a 210m height concrete faced rockfill dam. During the construction of the dam and the power facilities the Balui river has to be diverted by three diversion tunnels with a length of some 1,400m each. The inner diameter of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet and outlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four. defined Rock Mass Types (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each 'global' slope without any rock support and shotcrete system. In the second stage, it is calculated for each 'local'slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF

An Analytical Study on the Interest of Interested Parties of School and Corporation in the Apprenticeship School Policy: Focusing on the Concerns-Based Adoption Model(CBAM) (학교, 기업 관계자의 산학일체형 도제학교 정책에 대한 관심도 분석: 관심중심수용모형(CBAM)을 중심으로)

  • Lee, Soo-jeong;Kim, Min-jeong
    • Journal of vocational education research
    • /
    • v.37 no.6
    • /
    • pp.1-15
    • /
    • 2018
  • The objective of this study is to provide the basic data for the efficient operation of industry-academia partnership apprenticeship school, by analyzing the interest in the relevant policy, targeting the interested parties of school and corporation as the two main subjects operating the industry-academia partnership apprenticeship school. Using the Concerns-Based Adoption Model(CBAM) used for understanding the interested parties' interest in the adoption of a certain new changing. In the results of analysis, first, currently, the operating subjects of industry-academia partnership apprenticeship school showed the similar interest with the pattern of nonusers. In other words, currently, based on the curiosity about the relevant policy, they are interested in which roles they should perform for the successful operation. Second, when dividing the operating subjects of industry-academia partnership apprenticeship school into school parties and corporate parties, the results of examining the differences in the interest of each subject are as follows. First, in the stages except for the Stage 0(indifference), the interest of school parties was relatively higher than the one of corporate parties. It might be because the school's role is bigger in the operation of industry-academia partnership apprenticeship school, contrary to the advanced countries. In other words, in case of school parties, the overall and general understanding of the relevant policy is premised, so that their interest of each stage is higher than the one of corporate parties. Especially, the Stage 5(cooperative interest) showed the biggest differences. As the cooperation between industry and academia is the success factor of the relevant policy, it would be necessary to implant the concrete measures for industry-academia cooperation in school parties, and also to implant the importance of industry-academia cooperation in corporate parties. Next, both operating subjects showed the lowest intensity in the Stage 4(consequential interest). It means that the operating subjects' interest in the evaluation of apprenticeship students is relatively low.