• Title/Summary/Keyword: two-scale modeling

Search Result 321, Processing Time 0.21 seconds

The Null Distribution of the Likelihood Ratio Test for a Mixture of Two Gammas

  • Min, Dae-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.289-298
    • /
    • 1998
  • We investigate the distribution of likelihood ratio test(LRT) of null hypothesis a sample is from single gamma with unknown shape and scale against the alternative hypothesis a sample is from a mixture of two gammas, each with unknown scale and unknown (but equal) scale. To obtain stable maximum likelihood estimates(MLE) of a mixture of two gamma distributions, the EM(Dempster, Laird, and Robin(1977))and Modified Newton(Jensen and Johansen(1991)) algorithms were implemented. Based on EM, we made a simple structure likelihood equation for each parameter and could obtain stable solution by Modified Newton Algorithms. Simulation study was conducted to investigate the distribution of LRT for sample size n = 25, 50, 75, 100, 50, 200, 300, 400, 500 with 2500 replications. To determine the small sample distribution of LRT, I considered the model of a gamma distribution with shape parameter equal to 1 + f(n) and scale parameter equal to 2. The simulation results indicate that the null distribution is essentially invariant to the value of the shape parameter. Modeling of the null distribution indicates that it is well approximated by a gamma distribution with shape parameter equal to the quantity $0.927+1.18/\sqrt{n}$ and scale parameter equal to 2.16.

  • PDF

Remote Sensing Information Models for Sediment and Soil

  • Ma, Ainai
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.739-744
    • /
    • 2002
  • Recently we have discovered that sediments should be separated from lithosphere, and soil should be separated from biosphere, both sediment and soil will be mixed sediments-soil-sphere (Seso-sphere), which is using particulate mechanics to be solved. Erosion and sediment both are moving by particulate matter with water or wind. But ancient sediments will be erosion same to soil. Nowadays, real soil has already reduced much more. Many places have only remained sediments that have ploughed artificial farming layer. Thus it means sediments-soil-sphere. This paper discusses sediments-soil-sphere erosion modeling. In fact sediments-soil-sphere erosion is including water erosion, wind erosion, melt-water erosion, gravitational water erosion, and mixed erosion. We have established geographical remote sensing information modeling (RSIM) for different erosion that was using remote sensing digital images with geographical ground truth water stations and meteorological observatories data by remote sensing digital images processing and geographical information system (GIS). All of those RSIM will be a geographical multidimensional gray non-linear equation using mathematics equation (non-dimension analysis) and mathematics statistics. The mixed erosion equation is more complex that is a geographical polynomial gray non-linear equation that must use time-space fuzzy condition equations to be solved. RSIM is digital image modeling that has separated physical factors and geographical parameters. There are a lot of geographical analogous criterions that are non-dimensional factor groups. The geographical RSIM could be automatic to change them analogous criterions to be fixed difference scale maps. For example, if smaller scale maps (1:1000 000) that then will be one or two analogous criterions and if larger scale map (1:10 000) that then will be four or five analogous criterions. And the geographical parameters that are including coefficient and indexes will change too with images. The geographical RSIM has higher precision more than mathematics modeling even mathematical equation or mathematical statistics modeling.

  • PDF

Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.421-437
    • /
    • 2018
  • Free vibration analysis of a three-layered microbeam including an elastic micro-core and two piezo-magnetic face-sheets resting on Pasternak's foundation are studied in this paper. Strain gradient theory is used for size-dependent modeling of microbeam. In addition, three-unknown shear and normal deformations theory is employed for description of displacement field. Hamilton's principle is used for derivation of the governing equations of motion in electro-magneto-mechanical loads. Three micro-length-scale parameters based on strain gradient theory are employed for prediction of vibrational characteristics of structure in micro-scale. The results show that increase of three micro-length-scale parameters leads to significant increase of three natural frequencies especially for increase of second micro-length-scale parameter. This result is according to this fact that stiffness of a micro-scale structure is increased with increase of micro-length-scale parameters.

City-Scale Modeling for Street Navigation

  • Huang, Fay;Klette, Reinhard
    • Journal of information and communication convergence engineering
    • /
    • 제10권4호
    • /
    • pp.411-419
    • /
    • 2012
  • This paper proposes a semi-automatic image-based approach for 3-dimensional (3D) modeling of buildings along streets. Image-based urban 3D modeling techniques are typically based on the use of aerial and ground-level images. The aerial image of the relevant area is extracted from publically available sources in Google Maps by stitching together different patches of the map. Panoramic images are common for ground-level recording because they have advantages for 3D modeling. A panoramic video recorder is used in the proposed approach for recording sequences of ground-level spherical panoramic images. The proposed approach has two advantages. First, detected camera trajectories are more accurate and stable (compared to methods using multi-view planar images only) due to the use of spherical panoramic images. Second, we extract the texture of a facade of a building from a single panoramic image. Thus, there is no need to deal with color blending problems that typically occur when using overlapping textures.

A proposal for an approach for meso scale modeling for concrete based on rigid body spring model

  • Zhao, Chao;Shi, Zheng;Zhong, Xingu
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.283-295
    • /
    • 2021
  • Existing meso-scale models of concrete need to refine the mesh grids of aggregate and cement mortar, which may greatly reduce the computational efficiency. To overcome this problem, a novel meso-scale modeling strategy, which is based on rigid body spring method and Voronoi diagram, is proposed in this study to establish the meso-scale model of concrete. Firstly, establish numerical aggregate models according to user-defined programs. Circle aggregates are adopted due to their high efficiency in generation and packing process, and the grading of aggregate are determined according to the distribution curve proposed by Full and Thompson; Secondly, extract the centroids of aggregates, and then develop the Voronoi diagram in which aggregate centroids are defined as initial scatters; Finally, establish the rigid body spring model for concrete based on the Voronoi diagram. Aggregates are represented by rigid blocks, and assumed to be unbreakable. Cement mortar is concentrated into the interface between adjacent blocks and represented by two uniform springs. The number of grids is consistent with that of aggregates in specimens, and no mesh-refinement of aggregates and cement mortar is required. The accuracy and efficiency of the proposed modeling strategy are firstly identified by comparing the numerical results with the experimental ones, and then the applicability of the proposed strategy with different volume percentage occupied by aggregates is investigated.

무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가 (Evaluation of Possibility of Large-scale Digital Map through Precision Sensor Modeling of UAV)

  • 임평채;김한결;박지민;이수암
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1393-1405
    • /
    • 2020
  • 무인항공기(UAV: Unmanned Aerial Vehicle)는 저고도 비행으로 인해 고해상도 영상을 취득할 수 있으며, 수시촬영이 가능하여 지도제작에 있어 수시갱신이 가능하다. 이러한 이점으로 인해 무인항공기 영상을 이용한 대축척 수치지도 제작 가능성에 대한 연구가 활발히 진행되고 있다. 정밀한 수치지도는 디지털트윈이나 스마트시티의 기반 데이터로 활용될 수 있다. 정밀한 수치지도를 제작하기 위해서는 지상기준점을 이용한 정밀 센서모델링이 반드시 선행되어야 한다. 본 연구에서는, 자체 개발한 정밀 센서모델링 알고리즘을 통해 무인항공기 영상의 기하모델을 수립하였다. 그리고 수치지도를 제작하여 대축척 수치도화 가능성을 평가하였다. 연구 데이터는 인천 간석동과 서울 여의도를 대상으로 영상 및 지상기준점을 취득하였다. 정밀 센서모델링 정확도 분석 결과, 두 지역에 대해서 체크 점 평균오차 3 픽셀 이내, RMSE 4 픽셀 이내의 높은 정확도를 확인하였다. 수치도화 정확도 분석 결과, 국토지리정보원에서 고시한 1:1,000 세부도화 수평오차(0.4 m) 및 표고오차(0.4 m)를 만족하는 범위의 정확도를 확인하였다. 따라서 본 연구에서 자체개발한 정밀 센서모델링 기술은 무인항공기 영상의 1:1,000 대축척 수치도화 제작 가능성을 시사한다.

비선형 전왜재료 내부의 균열에 대한 응력 확대계수 (Stress Intensity Factors for a Crack in a Nonlinear Electrostrictive Material)

  • 범현규;정은도
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.186-191
    • /
    • 2001
  • A crack with electrically impermeable surfaces in an electrostrictive material subjected to uniform electric loading is analysed. The effect of electric yielding on stress intensity factor is investigated by using a small scale yielding model and a strip yield zone model. Complete forms of electric fields and elastic fields are derived by using complex function theory. The electrical yield zone shapes for two models are different each other. The two models, however, predict similar yield zone sizes under the small scale yielding conditions. It is found that the influence of electric yielding on the stress intensity factor is insensitive to the modeling of the electrical yield zone shape.

  • PDF

DEVELOPMENT PROCESS OF INFORMATION FLOW RETRIEVAL SYSTEM FOR LARGE-SCALE CONSTRUCTION PROJECTS

  • Jinho Shin;Hyun-soo Lee ;Moonseo Park;Jung-ho Yu;Jungseok Kim
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.556-560
    • /
    • 2011
  • Players of construction projects proceed with each work process by information gathering, modification and communication. Due to the complex and long-span lifecycle projects increased, it became more important to grasp this mechanism for the successful project performance in construction project. Hence, most project information management systems or knowledge management systems equip information retrieval system. There are two logic to infer the meaning of retrieval target; inductive reasoning and deductive reasoning. The former is based on metadata explaining the target and the later is based on relation between data. To infer the information flow, it is necessary to define the correlation between players and work processes. However, most established information retrieval systems are based on index search system and it is not focused on correlation between data but data itself. Thus, this research aims to research on process of information flow retrieval system for large-scale construction projects.

  • PDF

쌍끌이 기선저인망의 유수저항 특성 및 모형 실험시의 축척비 영향 (Flow resistance of bottom pair trawl nets and scale effect in their model experiments)

  • 김대진
    • 수산해양기술연구
    • /
    • 제51권2호
    • /
    • pp.203-211
    • /
    • 2015
  • The purpose of this study is to identify the flow resistance of the bottom pair trawl nets. The bottom pair trawl nets being used in fishing vessel (100G/T, 550ps) was selected as a full-scale net, and 1/10, 1/25 and 1/50 of the model nets were made. Converted into the full-scale net by Tauti's modeling rule and Kim's modeling rule, when resistance coefficient k of each net was calculated by substituting into above equation for flow resistance R and wall area of nets S values of each net ${\upsilon}$. Because resistant coefficient k decreases exponentially according as flow velocity ${\upsilon}$ increases to make $k=c{\upsilon}^{-m}$, c and m values of each net were compared. As a result, as the model was smaller, c and m values was smaller in the two rule into standard of 1/10 model value, decrease degree of 1/25 model was almost same in the two rule, decrease degree of 1/50 model was very big in Tauti's modeling rule. Therefore, in the result of experiment, because average of c and m values for similarly 1/10 and 1/25 model were given $c=4.9(kgf{\cdot}s^2/m^4)$ and m=0.45, R (kgf) of bottom pair trawl net could show $R=4.9S{\upsilon}^{1.55}$ using these values. As in the order of cod-end, wing and bag part for 1/25 and 1/50 model net were removed in turn, measured flow resistance of each, converted into the full-scale, total resistance of the net and the resistance of each part net were calculated. The resistance ratio of each part for total net was not same in 1/25 and 1/50 model each other, but average of two nets was perfectly same area ratio of each part as the wing, bag and cod-end part was 43%, 45% and 12%. However, the resistance of each part divided area of the part, calculated the resistance of per unit area, wing and bag part were not big difference each other, while the resistance of cod-end part was very large.

Static behavior of novel RCS through-column-type joint: Experimental and numerical study

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.111-126
    • /
    • 2019
  • This paper deals with experimental investigation and modeling of the static behavior of a novel RCS beam-column exterior joint. The studied joint detail is a through-column type in which an H steel profile totally embedded inside RC column is directly welded to the steel beam. The H steel profile was covered by two supplementary plates in the joint area in order to avoid the stirrups resisting shear in the joint area. Two full-scale through-column-type RCS joints were tested under static loading. The objectives of the tests were to examine the connection performance and to highlight the contribution of two supplementary plates on the shear resistance of the joint. A reliable nonlinear 3D finite element model was developed using ABAQUS software to predict the response and behavior of the studied RCS joint. An extensive parametric study was performed to investigate the influences of the stirrups, the encased profile length and supplementary plate length on the behavior of the studied RCS joint.