• Title/Summary/Keyword: two-scale modeling

Search Result 315, Processing Time 0.025 seconds

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory

  • Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.683-693
    • /
    • 2017
  • According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index, nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.

Numerical Analysis of Ventilation Effectiveness using Turbulent Airflow Modeling (난류유동해석을 통한 환기효율의 수치해석적 연구)

  • Han, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.253-262
    • /
    • 1992
  • A numerical procedure is introduced to calculate local ventilation effectiveness using the definitions of local decay rate and local mean age. A low Reynolds number $k-{\varepsilon}$ model is implemented to calculate steady state turbulent velocity distributions, and a step-down method is used to calculate transient concentration distributions. Simulations are carried out for several different values of air change rates and several different diffuser angles in a two-dimensional model of a half scale office room. The results show that the local ventilation effectiveness within a room could vary significantly from one location to another. The nominal air change rate based on the assumption of complete mixing of room air does not provide the local ventilation effectiveness information. It is numerically proved that the local mean age distribution obtained from the transient calculation is equivalent to the steady state concentration distribution with homogeneously distributed contaminant sources.

  • PDF

On the continuum formulation for modeling DNA loop formation

  • Teng, Hailong;Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.219-237
    • /
    • 2011
  • Recent advances in scientific computing enable the full atomistic simulation of DNA molecules. However, there exists length and time scale limitations in molecular dynamics (MD) simulation for large DNA molecules. In this work, a two-level homogenization of DNA molecules is proposed. A wavelet projection method is first introduced to form a coarse-grained DNA molecule represented with superatoms. The coarsened MD model offers a simplified molecular structure for the continuum description of DNA molecules. The coarsened DNA molecular structure is then homogenized into a three-dimensional beam with embedded molecular properties. The methods to determine the elasticity constants in the continuum model are also presented. The proposed continuum model is adopted for the study of mechanical behavior of DNA loop.

Performance evaluation of steel and composite bridge safety barriers by vehicle crash simulation

  • Thai, Huu-Tai
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.405-414
    • /
    • 2010
  • The performance of full-scale steel and composite bridge safety barriers under vehicle crash is evaluated by using the nonlinear explicit finite element code LS-DYNA. Two types of vehicles used in this study are passenger car and truck, and the performance criteria considered include structural strength and deformation, occupant protection, and post-crash vehicle behavior. It can be concluded that the composite safety barrier satisfies all performance criteria of vehicle crash. Although the steel safety barrier satisfies the performance criteria of occupant protection and post-crash vehicle behavior, it fails to satisfy the performance criterion of deformation. In all performance evaluations, the composite safety barrier exhibits a superior performance in comparing with the steel safety barrier.

The Virial Relation and Intrinsic Shape of Elliptical Galaxies

  • Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.32.1-32.1
    • /
    • 2016
  • Early-type galaxies (ETGs) are supposed to follow the virial relation M ~ sigma^2 * R_e, with M being the galaxy mass, sigma being the stellar velocity dispersion, and R_e being the (2D) effective radius. I apply this relation to (a) the ATLAS3D sample and (b) the sample of Saglia et al. (2016). The two datasets reveal a statistically significant tilt of the empirical relation relative to the theoretical virial relation such that M ~ (sigma^2 * R_e)^0.92 with zero intrinsic scatter. This tilt disappears when replacing R_e with the semi-major axis of the projected half-light ellipse, a. Accordingly, a, not R_e, is the correct proxy for the scale radius of ETGs. By geometry, this implies that early-type galaxies are axisymmetric and oblate in general, in agreement with recent results from modeling based on kinematics and light distributions.

  • PDF

Labyrinth Seal Effects in Turbines (터빈 실(Seal)의 유동 해석)

  • Song, Bum Ho;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.158-162
    • /
    • 2000
  • Secondary flows in gas turbines, especially those associated tip clearance and labyrinth seals, have become a focus of interest for engine manufacturers. In the past, many analytical and experimental studies, which focused solely on the flows in either tip clearances or seals, have been conducted. This paper presents an analytical model that describes the flow response in a single stage turbine induced by a finite sealing gap at the turbine rotor. The flow is assumed to be axisymmetric and the analysis is done in the meridional plane. Upon going through the stage, the radially uniform upstream flow is assumed to split into two streams one associated with the seal and the other which has gone through the blades. The former is referred to as the leakage flow, and the latter is referred the as the passage flow. The passage flow is assumed to be inviscid and incompressible while the flow in the seal can be modeled as either inviscid or viscous. Thus, the model is capable of predicting the kinematic effects of labyrinth seals on the turbine flow field.

  • PDF

A Fundamental Study of the Supersonic Microjet (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • Jeong, M.S.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF

Interaction fields based on incompatibility tensor in field theory of plasticity-Part I: Theory-

  • Hasebe, Tadashi
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • This paper proposes an interaction field concept based on the field theory of plasticity. Relative deformation between two arbitrary scales, e.g., macro and micro fields, is defined which can be implemented in the crystal plasticity-based constitutive framework. Differential geometrical quantities responsible for describing dislocations and defects in the interaction field are obtained, based on which dislocation density and incompatibility tensors are further derived. It is shown that the explicit interaction exists in the curvature or incompatibility tensor field, whereas no interaction in the torsion or dislocation density tensor field. General expressions of the interaction fields over multiple scales with more than three scale levels are derived and implemented into the present constitutive equation.

Accurate Simulation of a Shallow-etched Grating Antenna on Silicon-on-insulator for Optical Phased Array Using Finite-difference Time-domain Methods

  • Seo, Dong-Ju;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.522-530
    • /
    • 2019
  • We present simulation methods to accurately determine the transmission efficiency and far-field patterns (FFPs) of a shallow-etched waveguide grating antenna (WGA) formed on a silicon-on-insulator wafer based on the finite-difference time-domain (FDTD) approach. The directionality and the FFP of a WGA with >1-mm in length can be obtained reliably by simulating a truncated WGA structure using a three-dimensional FDTD method and a full-scale WGA using a two-dimensional FDTD with the effective index method. The developed FDTD methods are applied to the simulation of an optical phased array (OPA) composed of a uniformly spaced WGA array, and the steering-angle dependent transmission efficiency and FFPs are obtained in OPA structures having up to 128-channel WGAs.