• Title/Summary/Keyword: two-phase system

Search Result 2,674, Processing Time 0.028 seconds

The Study on the Drag Reduction for Gas/Liquid Two Phase Flow (기-액(氣-液) 2상유동(二相流動)시 항력(抗力)에 관(關)한 연구(硏究))

  • Cha, K.O.;Oh, Y.K.;Kim, J.G.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.20-28
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with 24 m of the inner diameter and 1,500 mm of the length. The used polymer materials are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results were shown that the drag is higher reduced by co-polymer rather than polyanylamide.

  • PDF

A Study on the Drag Reduction with Polymer Additives (고분자물질(高分子物質) 첨가(添加)에 따른 마찰저항감소(摩擦抵抗減少)에 관한 연구(硏究))

  • Kim, J.G.;Cha, K.O.;Choi, H.J.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.198-207
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity, and turbulent intensity whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with the inner diameter of 24mm and the length of 1,500mm. The polymer materials used are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results showed that the drag reduction of co-polymer is higher than that of polyacrylamide. Mean liquid velocities increased as polymer was added, and turbulent intensity decreased inversely near the pipe wall.

  • PDF

A study on the channel design of bipolar plate of electrolytic cell by flow dynamic simulation in the two phase flow system (2상 흐름계에서 유로설계에 따른 전해조 분리판의 전산모사 연구)

  • Jo, Hyeon-Hak;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.415-420
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF

Two-Phase Flow Distribution, Phase Separation and Pressure Drop in Multi-Microchannel Tubes (마이크로채널관 내 2상 유량분배, 상분리 및 압력강하)

  • Cho, Hong-Ki;Cho, Geum-Nam;Yoon, Baek;Kim, Young-Saeng;Kim, Jung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.828-837
    • /
    • 2004
  • The present study investigated two-phase flow distribution, phase separation and pressure drop in multi-microchannel tubes under adiabatic condition. The test section consisted of inlet and outlet headers with the inner diameter of 19.4㎜ and 15 parallel microchannel tubes. Each microchannel tube brazed to the inlet and outlet headers and had 8 rectangular ports with the hydraulic diameter of 1.32㎜. The key experimental parameters were orientation of header (horizontal and vertical), flow direction of refrigerant into the inlet header (in-line, parallel and cross flow) and inlet quality (0.1, 0.2 and 0.3). It was found that the orientation of the header had relatively large effect on the flow distribution and phase separation, while the inlet quality didn't affect much on them. The horizontal header showed the better flow distribution and phase separation characteristics than the vertical one. The parallel flow condition with the horizontal header showed the best performance for the flow distribution and phase separation characteristics under the test conditions. Two-phase pressure drops through the microchannel tubes with the horizontal header were higher than those of the microchennel tubes with the vertical header due to gravitational effect.

Purification of Intracellular $\beta$-Galactosidase from Lactobacillus sporogenes in an Aqueous Poly(ethylene glycol)- Potassium Phosphate Two-Phase System (Poly(ethylene glycol)/인산염 용액 2상계를 이용한 Lactobacillus sporogenes가 생산하는 균체내 $\beta$-Galactosidase의 추출 분리에 관한 연구)

  • 이삼빈;김영만;이철호
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.84-88
    • /
    • 1987
  • Poly(ethylene glycol)-PPB two phase system was used tot the purification of $\beta$-galactosidase from Lactobacillus sporogenes. The smaller the molecular weight of concentration of PEG phase in-creased, proteins as well as $\beta$-galactosidase was partitioned into the top phase. All cell debris were confined to the potassium phosphate phase (bottom phase), approached to the binodial line. The purification ratio increased by changing the polymer-salt composition of the tie line towards higher salt concentrations. It was also possible to obtain higher purification of the enzyme after two-step extraction using PEG 1000 and PEG 300. The top phase contained 74% of the total $\beta$-galactosidase with a purification factor of 2.1.

  • PDF

Antiferromagnetically Exchange-coupled Two Phase Magnets: Co/Co2TiSn

  • Kim, Tae-Wan;Oh, Jung-Keun
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.43-52
    • /
    • 2008
  • The objective of this paper is to review the magnetic and magneto-transport properties of Co/$Co_2TiSn$ consisting of two metallic magnetic phases that are antiferromagnetically exchange-coupled at the phase boundary. The bulk Co/$Co_2TiSn$ system, which has a $Co_2$TiSn Heusler alloy precipitates in the hexagonal Co matrix, showed an unusual coercivity change with a concurrent change in temperature, and was modeled on the basis of a wall formation caused by exchange coupling at the phase boundary. For measurements of magneto-transport properties, Co/$Co_2TiSn$ thin films that had two-magnet phases were deposited using a magnetron sputtering system with a composite target. The magnetization process in the films is also explained on the basis of the model of wall formation at the phase boundary. Annealed Co/$Co_2TiSn$ films showed a 0.12% GMR effect, indicating the scattering of polarized conduction electrons due to the antiparallel exchange coupling at the phase boundary. The scattering process of conduction electrons at the phase boundary was modeled with relation to the magnetization process.

Three-Dimensional Measurements of the Specular Components by Using Direct Phase-Measuring Transmission Deflectometry

  • Na, Silin;Shin, Sanghoon;Kim, Doocheol;Yu, Younghun
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1275-1280
    • /
    • 2018
  • We demonstrated transmission direct phase-measuring deflectometry (DPMD) with a specular phase object having discontinuous surfaces by using two displays and a two-dimensional array detector for display and by recording the distorted fringe patterns. Three-dimensional (3D) information was obtained by calculating the height map directly from the phase information. We developed a mathematical model of the phase-height relationship in transmission DPMD. Unlike normal transmission deflectometry, this method supports height measurement directly from the phase. Compared with other 3D measurement techniques such as interferometry, this method has the advantages of being inexpensive and easy to implement.

Production of $\alpha$-Amylase using Aqueous Two-Phase System (수성 2상계를 이용한 알파-아밀라제의 생산)

  • Choi, J.S.;Yoo, Y.J.
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.358-362
    • /
    • 1988
  • Aqueous two-phase fermentation system was tested for the overproduction of extracellular enzyme through $\alpha$-amylase fermentation by Bacillus amyloliquefaciens. By employing aqueous two-phase system $\alpha$-amylase activity showed 25% increase compared to the result using regular medium and no deactivation of the enzyme was observed. The presence of polyethylene glycol was observed to promote the enzyme production, while to inhibit the growth of the microorganism. It is recommended that polyethylene glycol be added during the log-growth phase and dextran be added after the enzyme activity reaches Its maximum for efficient $\alpha$-amylase fermentation and in situ recovery of the enzyme.

  • PDF

A Study on Thermal Performance of Simulated Chip using a Two Phase Cooling System in a Laptop Computer (휴대용 컴퓨터내의 이상유동 냉각시스템을 이용한 모사칩의 열성능에 관한 연구)

  • Park, Sang-Hee;Choi, Seong-Dae;Joshi, Yogendra
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, a two-phase closed loop cooling system is desinged and tested for a laptop computer using a FC-72. The cooling system is characterized by a parametric study which determines the effects of existence of a boiling enhancement microstructure, initial system pressure, volume fill ratio of coolant and inclination angle of condenser on the thermal performance of the closed loop. Experimental data show the optium condition when the volume ratio of working fluid is 70%, the pump flowing is 6ml/min, and the inclination angle of condenser is $0^{\circ}$. This research shows the maximum values which can dissipate 33W of chip power with a chip temperature maintained at $95^{\circ}C$.