• Title/Summary/Keyword: two-part model

Search Result 1,481, Processing Time 0.029 seconds

Analysis of Time Series Models for Ozone at the Southern Part of Gyeonggi-Do in Korea (경기도 남부지역 지표오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.364-372
    • /
    • 2007
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. In this article, two time series ARE models, the direct ARE model and applied ARE model have been considered for analyzing the ozone data at southern part of the Gyeonggi-Do, Pyeongtaek, Osan and Suwon monitoring sites in Korea. The result shows that the direct ARE model is better suited for describing the ozone concentration in all three sites. In both of the ARE models, eight meteorological variables and four pollution variables are used as the explanatory variables. Also the high level of ozone data (over 80 ppb) have been analyzed at the Pyeongtaek, Osan and Suwon monitoring sites.

A Study on Improvement of Scaling Factor Prediction Using Artificial Neural Network

  • Lee, Sang-Chul;Hwang, Ki-Ha;Kang, Sang-Hee;Lee, Kun-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.534-538
    • /
    • 2003
  • Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed knowledge of the natures and quantities of radionuclides in waste package. Many of these radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the Indirect method by which the concentrations of DTM (Difficult-to-Measure) nuclide is decided using the relation of concentrations (Scaling Factor) between Key (Easy-to-Measure) nuclide and DTM nuclide with measured concentrations of Key nuclide. In general, scaling factor is determined by using of log mean average (LMA) and regression. These methods are adequate to apply most corrosion product nuclides. But in case of fission product nuclides and some corrosion product nuclides, the predicted values aren't well matched with the original values. In this study, the models using artificial neural network (ANN) for C-14 and Sr-90 are compared with those using LMA and regression. The assessment of models is executed in the two parts divided by a training part and a validation part. For all of two nuclides in the training part, the predicted values using ANN are well matched with the measured values compared with those using LMA and regression. In the validation part, the accuracy of the predicted values using ANN is better than that using LMA and is similar to or better than that using regression. It is concluded that the predicted values using ANN model are better than those using conventional model in some nuclides and ANN model can be used as the complement of LMA and regression model.

  • PDF

Development of the Forecasting Model for Parts in an Automobile (자동차 부품 수요의 예측 모형 개발)

  • Hong, Jung-Sik;Ahn, Jae-Kyung;Hong, Suk-Kee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.233-238
    • /
    • 2001
  • This paper deals with demand forecasting of parts in an automobile model which has been extinct. It is important to estimate how much inventory of each part in the extinct model should be stocked because production lines of some parts may be replaced by new ones although there is still demands for the model. Furthermore, in some countries, there is a strong regulation that the automobile manufacturing company should provide customers with auto parts for several years whenever they are requested. The major characteristic of automobile parts demand forecasting is that there exists a close correlation between the number of running cars and the demand of each part. In this sense, the total demand of each part in a year is determined by two factors, the total number of running cars in that year and the failure rate of the part. The total number of running cars in year k can be estimated sequentially by the amount of shipped cars and proportion of discarded cars in years 1, 2,$\cdots$, i. However, it is very difficult to estimate the failure rate of each part because available inter-failure time data is not complete. The failure rate is, therefore, determined so as to minimize the mean squared error between the estimated demand and the observed demand of a part in years 1, 2,$\cdots$, i. In this paper, data obtained from a Korean automobile manufacturing company are used to illustrate our model.

  • PDF

A Study of Gage R&R Analysis Considering the Variations of Between-Within Group and Within Part (군간-군내-부품내 변동을 고려한 Gage R&R 분석에 관한 연구)

  • Lee, Seung-Hun;Lee, Chang-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.975-982
    • /
    • 2005
  • The purpose of the Gage R&R study is to determine whether a measurement system is adequate for monitoring a process. If the measurement system variation is small relative to the process variation, then the measurement system is deemed 'adequate'. The sources of variation associated with the measurement system are compared using an analysis of variance (ANOVA) model, in general. A typical ANOVA model used in a standard Gage R&R study is the two-factor random effect model. Then, the ANOVA partitions the total variation into three categories: repeatability, reproducibility, part variation. However, if the process variation possesses the between group variation, within group variation, and within-part variation, these variations can cause the measurement system evaluation to provide misleading results. That is, in the standard Gage R&R study these variations affect the estimate of repeatability, reproducibility, or both. This paper presents a four-factor nested factorial ANOVA model which explicitly considers these variations for the Gage R&R study. The variance component estimates are derived by setting the EMS equations equal to the corresponding mean square from the ANOVA table and solving. And the proposed model is compared with the standard Gage R&R model.

  • PDF

Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 2: Robust Performance Assessment (확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제2편: 강인 성능 평가)

  • Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.115-121
    • /
    • 2012
  • This paper, being the second in a two-part series, presents the robust performance of the proposed design method which can enhance a reliability-based design optimization(RBDO) under the uncertainties of probabilistic models. The robust performances of the solutions obtained by the proposed method, described in the Part 1, are investigated through the parametric studies. A 10-bar truss example is considered, and the uncertain parameters include the number of data observed, and the variations of applied loadings and allowable stresses. The numerical results show that the proposed method can produce a consistent result despite of the large variations in the parameters. Especially, even with the relatively small data set, the analysis results show that the exact probabilistic model can be successfully predicted with optimized design sections. This consistency of estimating appropriate probability model is also observed in the case of the variations of other parameters, which verifies the robustness of the proposed method.

Faults detection and identification for gas turbine using DNN and LLM

  • Oliaee, Seyyed Mohammad Emad;Teshnehlab, Mohammad;Shoorehdeli, Mahdi Aliyari
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Applying more features gives us better accuracy in modeling; however, increasing the inputs causes the curse of dimensions. In this paper, a new structure has been proposed for fault detecting and identifying (FDI) of high-dimensional systems. This structure consist of two structure. The first part includes Auto-Encoders (AE) as Deep Neural Networks (DNNs) to produce feature engineering process and summarize the features. The second part consists of the Local Model Networks (LMNs) with LOcally LInear MOdel Tree (LOLIMOT) algorithm to model outputs (multiple models). The fault detection is based on these multiple models. Hence the residuals generated by comparing the system output and multiple models have been used to alarm the faults. To show the effectiveness of the proposed structure, it is tested on single-shaft industrial gas turbine prototype model. Finally, a brief comparison between the simulated results and several related works is presented and the well performance of the proposed structure has been illustrated.

Identification Methodology of FCM-based Fuzzy Model Using Particle Swarm Optimization (입자 군집 최적화를 이용한 FCM 기반 퍼지 모델의 동정 방법론)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Son, Myung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.184-192
    • /
    • 2011
  • In this study, we introduce a identification methodology for FCM-based fuzzy model. The two underlying design mechanisms of such networks involve Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on FCM clustering method for efficient processing of data and the optimization of model was carried out using PSO. The premise part of fuzzy rules does not construct as any fixed membership functions such as triangular, gaussian, ellipsoidal because we build up the premise part of fuzzy rules using FCM. As a result, the proposed model can lead to the compact architecture of network. In this study, as the consequence part of fuzzy rules, we are able to use four types of polynomials such as simplified, linear, quadratic, modified quadratic. In addition, a Weighted Least Square Estimation to estimate the coefficients of polynomials, which are the consequent parts of fuzzy model, can decouple each fuzzy rule from the other fuzzy rules. Therefore, a local learning capability and an interpretability of the proposed fuzzy model are improved. Also, the parameters of the proposed fuzzy model such as a fuzzification coefficient of FCM clustering, the number of clusters of FCM clustering, and the polynomial type of the consequent part of fuzzy rules are adjusted using PSO. The proposed model is illustrated with the use of Automobile Miles per Gallon(MPG) and Boston housing called Machine Learning dataset. A comparative analysis reveals that the proposed FCM-based fuzzy model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

A Systematic Career Advising Model and Strategies for Medical Students (의과대학생을 위한 체제적 진로상담 모델과 전략)

  • Lee, Young-Hee
    • Korean Medical Education Review
    • /
    • v.24 no.3
    • /
    • pp.193-204
    • /
    • 2022
  • One of the important roles of medical schools is to support medical students in deciding upon their future career path or choosing their specialty. The purpose of this study is to suggest a career advising model and strategies for medical students through a systematic approach. This study consists of three parts. The first part introduces some main career theories: super's career development theory, career decision-making theory, social cognitive career theory, and ecosystem theory. The second part proposes a systematic career advising model using the results acquired from previous studies and theories. This model considers a medical school as a social system that consists of two domains (internal and external). This social system is considered as a complex where various factors interact with each other: students' individual characteristics, institutional policies and culture, curriculum and learning experience, students' perceived specialty characteristics, and aspects of the external environment such as healthcare systems. The third part suggests some career advising strategies based on a systematic approach that medical schools can apply. These research results can be used for designing career advising courses for medical students, integrating various career advising programs and resources of medical schools, and evaluating the outcomes of career advising programs at an institutional level.

Mass-flow Stabilization Control of a Strip Head Part in Hot Rolling Process (열간 압연공정의 선단부 통판성 안정화 제어)

  • Hwang, I-Cheol;Park, Cheol-Jae;Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.330-336
    • /
    • 2009
  • This paper studies on the new control algorithm for the mass-flow stabilization in strip head part of a hot strip mill. A new strip tension model in the strip head part is derived using the current deviation of two neighboring stands. The current deviation means a difference between a measured current and a lock-on current, where the lock-on current is set up when a strip tension or a looper angle reaches each target value or time is about 0.4sec, respectively. On the basis of the tension calculation model, a mill velocity of a backward stand is controlled to stabilize a strip mass-flow by PI control algorithm. Therefore, the mass-flow control for strip head part is executed from a metal-in time into a foreward stand till the looper works normally. It is known by the results of a computer simulation and an experiment that the proposed control algorithm is very effective in stabilizing the mass flow of the strip head part.

Directional ARMAX Model-Based Approach for Rotordynamics Identification, Part 1 : Modeling and Analysis (방향 시계열에 의한 회전체 동특성 규명: (I) 모델링 및 해석)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1103-1112
    • /
    • 1998
  • A new time series method, directional ARMAX (dARMAX) model-based approach. is proposed for rotor dynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible, to account for the dynamic characteristics inherent in rotating machinery. This paper is divided into two parts : The dARMAX modeling, analysis. and fitting strategy are presented in the first part. whereas a evaluation of its performance characteristics based on both simulated and experimental data is presented in the second.

  • PDF