• Title/Summary/Keyword: two-parameter exponential family

Search Result 2, Processing Time 0.018 seconds

How to Improve Classical Estimators via Linear Bayes Method?

  • Wang, Lichun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.531-542
    • /
    • 2015
  • In this survey, we use the normal linear model to demonstrate the use of the linear Bayes method. The superiorities of linear Bayes estimator (LBE) over the classical UMVUE and MLE are established in terms of the mean squared error matrix (MSEM) criterion. Compared with the usual Bayes estimator (obtained by the MCMC method) the proposed LBE is simple and easy to use with numerical results presented to illustrate its performance. We also examine the applications of linear Bayes method to some other distributions including two-parameter exponential family, uniform distribution and inverse Gaussian distribution, and finally make some remarks.

On the Bayes risk of a sequential design for estimating a mean difference

  • Sangbeak Ye;Kamel Rekab
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.427-440
    • /
    • 2024
  • The problem addressed is that of sequentially estimating the difference between the means of two populations with respect to the squared error loss, where each population distribution is a member of the one-parameter exponential family. A Bayesian approach is adopted in which the population means are estimated by the posterior means at each stage of the sampling process and the prior distributions are not specified but have twice continuously differentiable density functions. The main result determines an asymptotic second-order lower bound, as t → ∞, for the Bayes risk of a sequential procedure that takes M observations from the first population and t - M from the second population, where M is determined according to a sequential design, and t denotes the total number of observations sampled from both populations.