• 제목/요약/키워드: two-parameter elastic foundation

검색결과 116건 처리시간 0.027초

Generalized beam-column finite element on two-parameter elastic foundation

  • Morfidis, K.;Avramidis, I.E.
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.519-537
    • /
    • 2005
  • A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic foundation is presented herein. This element is based on the exact solution of the differential equation which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation, and can take into account shear deformations, semi - rigid connections, and rigid offsets. The equations of equilibrium are formulated for the deformed configuration, so as to account for axial force effects. Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel structures analysis is demonstrated by two examples.

Symmetrically loaded beam on a two-parameter tensionless foundation

  • Celep, Z.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • 제27권5호
    • /
    • pp.555-574
    • /
    • 2007
  • Static response of an elastic beam on a two-parameter tensionless foundation is investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated edge loads. Governing equations of the problem are obtained and solved by pointing out that a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact and a discontinuity in the foundation reactions in the case of partial contact come into being as a direct result of the two-parameter foundation model. The numerical solution of the complete contact problem is straightforward. However, it is shown that the problem displays a highly non-linear character when the beam lifts off from the foundation. Numerical treatment of the governing equations is accomplished by adopting an iterative process to establish the contact length. Results are presented in figures to demonstrate the linear and non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively.

Analysis of partially embedded beams in two-parameter foundation

  • Akoz, A.Yalcin;Ergun, Hale
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, Pasternak foundation model, which is a two parameter foundation model, is used to analyze the behavior of laterally loaded beams embedded in semi-infinite media. Total potential energy variation of the system is written to formulate the problem that yielded the required field equations and the boundary conditions. Shear force discontinuities are exposed within the boundary conditions by variational method and are validated by photo elastic experiments. Exact solution of the deflection of the beam is obtained. Both foundation parameters are obtained by self calibration for this particular problem and loading type in this study. It is shown that, like the first parameter k, the second foundation parameter G also depends not only on the material type but also on the geometry and the loading type of the system. On the other hand, surface deflection of the semi infinite media under singular loading is obtained and another method is proposed to determine the foundation parameters using the solution of this problem.

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

Analysis of circular plates on two - parameter elastic foundation

  • Saygun, Ahmet;Celik, Mecit
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.249-267
    • /
    • 2003
  • In this study, circular plates subjected to general type of loads and supported on a two-parameter elastic foundation are analysed. The stiffness, elastic bedding and soil shear effect matrices of a fully compatible ring sector plate element, developed by Saygun (1974), are obtained numerically assuming variable thickness of the element. Ring sector soil finite element is also defined to determine the deflection of the soil surface outside the domain of the plate in order to establish the interaction between the plate and the soil. According to Vallabhan and Das (1991) the elastic bedding (C) and shear parameters ($C_T$) of the foundation are expressed depending on the elastic constants ($E_s$, $V_s$) and the thickness of compressible soil layer ($H_s$) and they are calculated with a suitable iterative procedure. Using ring sector elements presented in this paper, permits the generalization of the loading and the boundary conditions of the soil outside the plate.

A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.313-336
    • /
    • 2017
  • This article investigates vibration behavior of magneto-electro-elastic functionally graded (MEE-FG) nanobeams embedded in two-parameter elastic foundation using a third-order parabolic shear deformation beam theory. Material properties of MEE-FG nanobeam are supposed to be variable throughout the thickness based on power-law model. Based on Eringen's nonlocal elasticity theory which captures the small size effects and using the Hamilton's principle, the nonlocal governing equations of motions are derived and then solved analytically. Then the influences of elastic foundation, magnetic potential, external electric voltage, nonlocal parameter, power-law index and slenderness ratio on the frequencies of the embedded MEE-FG nanobeams are studied.

두 파라메타 탄성기초위에 놓인 불균일 Timoshenko보의 안정성과 진동 (Stability and Vibration of Non-Uniform Timoshenko Beams resting on Two-Parameter Elastic Foundations)

  • 이종원;류봉조;이규섭;공용식;오부진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.596-601
    • /
    • 2000
  • The paper presents free vibration and stability analyses of a non-uniform Timoshenko beam resting on a two-parameter elastic soil. The soil parameters can vary along the spat and is assumed to be two-parameter model including the effects of both transverse shear deformation and elastic foundation Governing equations related to the vibration and the stability of the beam are derived from Hamilton's principle, and the resulting eigen-value problems can be solved to give natural frequencies and critical force by finite element method. Numerical results for both vibration and stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies, mode shapes and critical forces are investigated for various thickness ratios, shear foundation parameter, Winkler foundation parameter and boundary conditions of tapered Timoshenko beams.

  • PDF

Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation

  • Hizal, Caglayan;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.969-988
    • /
    • 2016
  • Vibration analysis of the beams on elastic foundation has gained the great interest of many researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus on the comparison of dynamic response including the bending moment and shear force of the beams resting on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of variables method. Governing equations were obtained by assuming that the material had linear elastic behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and presented in figures to find out the differences between the modified Vlasov model and conventional Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic response of the beam was investigated.

Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load

  • Celep, Z.;Guler, K.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.61-77
    • /
    • 2011
  • Static and dynamic responses of a completely free elastic beam resting on a two-parameter tensionless Pasternak foundation are investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated load at its middle. Governing equations of the problem are obtained and solved by paying attention on the boundary conditions of the problem including the concentrated edge foundation reaction in the case of complete contact and lift-off condition of the beam ina two-parameter foundation. The nonlinear governing equation of the problem is evaluated numerically by adopting an iterative procedure. Numerical results are presented in figures to demonstrate the non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively by considering the static and dynamic loading cases.

Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method

  • Uzun, Busra;Civalek, Omer
    • Advances in nano research
    • /
    • 제7권2호
    • /
    • pp.99-108
    • /
    • 2019
  • Higher-order theories are very important to investigate the mechanical properties and behaviors of nanoscale structures. In this study, a free vibration behavior of SiNW resting on elastic foundation is investigated via Eringen's nonlocal elasticity theory. Silicon Nanowire (SiNW) is modeled as simply supported both ends and clamped-free Euler-Bernoulli beam. Pasternak two-parameter elastic foundation model is used as foundation. Finite element formulation is obtained nonlocal Euler-Bernoulli beam theory. First, shape function of the Euler-Bernoulli beam is gained and then Galerkin weighted residual method is applied to the governing equations to obtain the stiffness and mass matrices including the foundation parameters and small scale parameter. Frequency values of SiNW is examined according to foundation and small scale parameters and the results are given by tables and graphs. The effects of small scale parameter, boundary conditions, foundation parameters on frequencies are investigated.