• Title/Summary/Keyword: two-fluid flow

Search Result 1,933, Processing Time 0.024 seconds

Instability of pipes and cables in non-homogeneous cross-flow

  • Riera, Jorge D.;Brito, J.L.V.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The vibrations of bodies subjected to fluid flow can cause modifications in the flow conditions, giving rise to interaction forces that depend primarily on displacements and velocities of the body in question. In this paper the linearized equations of motion for bodies of arbitrary prismatic or cylindrical cross-section in two-dimensional cross-flow are presented, considering the three degrees of freedom of the body cross-section. By restraining the rotational motion, equations applicable to circular tubes, pipes or cables are obtained. These equations can be used to determine stability limits for such structural systems when subjected to non uniform cross-flow, or to evaluate, under the quasi static assumption, their response to vortex or turbulent excitation. As a simple illustration, the stability of a pipe subjected to a bidimensional flow in the direction normal to the pipe axis is examined. It is shown that the approach is extremely powerful, allowing the evaluation of fluid-structure interaction in unidimensional structural systems, such as straight or curved pipes, cables, etc, by means of either a combined experimental-numerical scheme or through purely numerical methods.

Effects of Runner Extension and Ingates on Mold Filling in Ring-type Cast Products (환형주조품의 용탕충진에 미치는 탕도연장부와 주입구 형상의 영향)

  • Park, Kyeong-Seob;Kang, Shin-Wook;Kim, Hee-Soo
    • Journal of Korea Foundry Society
    • /
    • v.35 no.2
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, potential defects of ring-type cast products during the mold-filling stage of the casting process were investigated using computer simulation. The main focus was on the effects of runner extension and ingates. During the mold filling the molten metal flowed from the bottom to the top of the mold in two curved paths along the ring-type cavity. The fluid fronts in the two paths did not show the identical velocity during the mold filling stage. This difference in the filling speeds may cause defects such as voids and local contractions. The present model contained virtual fluid detectors at various positions inside the mold. When the molten metal passed those points, the volume of fluid jumped up from zero to one. The moments were measured to compare the speeds of the fluid fronts. We attempted various combinations of runner extensions and ingates to stabilize the flow and then to optimize the casting mold design.

Hemodynamical analysis by viscosity characteristics of artificial blood for μ-PIV experiment of Radio-cephalic arteriovenous fistula(RC-AVF) (μ-PIV기법을 이용한 동정맥루 모사혈관에서의 모사 혈액의 점도특성에 따른 혈류역학적 분석)

  • Song, Ryungeun;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Radio-cephalic arteriovenous fistula(RC-AVF) is the most recommended operation of achieving access for hemodialysis. However, it has high rates of early failure depending on the many haemodynamic conditions. To increase RC-AVF patency rate, many researches were performed by in-vitro experiment via artificial vessel and blood analogue fluid, and there were conflicting opinions about whether the non-Newtonian properties of blood have an influence on the flow in large arteries. To investigate the influence of viscoelasticity of blood within the RC-AVF, we fabricated three dimensional artificial RC-AVF and two kinds of blood analogue fluid. The velocity field of two fluids within the vessel were measured by micro-particle velocimetry(m-PIV) and compared with each other. The velocity profiles of both fluids for systolic phase were matched well while those for diastolic phase did not correspond. Therefore, it is desired to use non-newtonian fluid for in-vitro experiment of RC-AVF.

NEW WALL DRAG AND FORM LOSS MODELS FOR ONE-DIMENSIONAL DISPERSED TWO-PHASE FLOW

  • KIM, BYOUNG JAE;LEE, SEUNG WOOK;KIM, KYUNG DOO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.416-423
    • /
    • 2015
  • It had been disputed how to apply wall drag to the dispersed phase in the framework of the conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the volume-averaged momentum equation based on the equation of a solid/fluid particle motion. They showed theoretically that for dispersed two-phase flows, the overall two-phase pressure drop by wall friction must be apportioned to each phase, in proportion to each phase fraction. In this study, the validity of the proposed wall drag model is demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the existing form loss model incorrectly predicts the motion of the dispersed phase. A new form loss model is proposed to overcome that problem. The newly proposed form loss model is tested in the region covering the lower plenum and the core in a nuclear power plant. As a result, it is shown that the new models can correctly predict the relative velocity of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

Study of Mechanism of Counter-rotating Turbine Increasing Two-Stage Turbine System Efficiency

  • Liu, Yanbin;Zhuge, Weilin;Zheng, Xinqian;Zhang, Yangjun;Zhang, Shuyong;Zhang, Junyue
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.160-169
    • /
    • 2013
  • Two-stage turbocharging is an important way to raise engine power density, to realize energy saving and emission reducing. At present, turbine matching of two-stage turbocharger is based on MAP of turbine. The matching method does not take the effect of turbines' interaction into consideration, assuming that flow at high pressure turbine outlet and low pressure turbine inlet is uniform. Actually, there is swirl flow at outlet of high pressure turbine, and the swirl flow will influence performance of low pressure turbine which influencing performance of engine further. Three-dimension models of turbines with two-stage turbocharger were built in this paper. Based on the turbine models, mechanism of swirl flow at high pressure turbine outlet influencing low pressure turbine performance was studied and a two-stage radial counter-rotation turbine system was raised. Mechanisms of the influence of counter-rotation turbine system acting on low-pressure turbine were studied using simulation method. The research result proved that in condition of small turbine flow rate corresponding to engine low-speed working condition, counter-rotation turbine system can effectively decrease the influence of swirl flow at high pressure turbine outlet imposing on low pressure turbine and increases efficiency of the low-pressure turbine, furthermore increases the low-speed performance of the engine.

Development of a New Modeling Technique to Simulate 3-dimensional Electroplating System Considering the Effects of Fluid Flow

  • Lim, Kyung-Hwan;Lee, Minsu;Yim, Tai Hong;Seo, Seok;Yi, Kyung-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.408-415
    • /
    • 2019
  • Electroplating is a widely used surface treatment method in the manufacturing process of electronic parts and uniformity of the electrodeposition thickness is very crucial for these applications. Since many variables including fluid flow influence the uniformity of the film, it is difficult to conduct efficient research only by experiments. So many studies using simulation have been carried out. However, the most popular simulation technique, which calculates secondary current distribution, has a limitation on the considering the effects of fluid flow on the deposition behavior. And modified method, which is calculating a tertiary current distribution, is limited to a two-dimensional study of simple shapes because of the massive computational load. In the present study, we propose a new electroplating simulation method that can be applied to complex shapes considering the effect of flow. This new model calculates the electroplating process with three steps. First, the thickness of boundary layers on the surface of the cathode plane and velocity magnitudes at the positions are calculated from the simulation of fluid flow. Next, polarization curves of different velocities are obtained by calculations or experiments. Finally, both results are incorporated into the electroplating simulation program as boundary conditions at the cathode plane. The results of the model showed good agreements with the experimental results, and the effects of fluid flow of electrolytes on the uniformity of deposition thickness was quantitatively predicted.

Flow visualization Study on the Turbulent Mixing of Two Fluid Streams(I) (분지관 혼합기의 난류 혼합에 대한 유동 가시화 연구(I))

  • Kim, Gyeong-Cheon;Sin, Dae-Sik;Lee, Bu-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • An experimental study has been carried out to obtain optimal conditions for turbulent mixing of two fluid streams at various angle branches by a flow visualization method. The main purpose of this study is the utilization of flow visualization method as a fast and efficient way to find the optimal mixing conditions when several flow control parameters are superimposed. It is verified that the optimal conditions estimated by flow visualization method have good agreement with the concentration field measurements. The results demonstrate that the diameter ratio is mainly attributed to the mixing phenomena than the branch pipe angle and the Reynolds number. The most striking fact is that there exists the best diameter ratio, d/D.ident. O.17, which requires the minimum momentum ratio in the range of the present experiment. The velocity ratio for the optimal mixing condition has a value within 2 to 16 according to the different flow parameters.

Cavitating Flow Analysis of Multistage Centrifugal Pump (다단 원심펌프의 공동현상 유동해석)

  • Rakibuzzaman, Rakibuzzaman;Suh, Sang-Ho;Kim, Hyoung-Ho;Cho, Min-Tae;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • The purpose of this study is to investigate cavitating flow of the multistage centrifugal pump. Cavitation is observed in the impeller leading edge and trailing edge of the suction area. Head coefficients are measured under different flow operating conditions. The Rayleigh-Plesset cavitation model is adapted to predict the occurrence of cavitation in the pump. The two-phase gas-liquid homogeneous CFD method is used to analyze the centrifugal pump performances with two equation transport turbulence model. The simulations are carried out with three different flow coefficients such as 0.103, 0.128 and 0.154. The occurrence of cavitation described according to water vapor volume fraction. The head versus NPSH (Net Positive Suction Head) also measured using different flow coefficients. Development of cavitation in the centrifugal pump impellerI is discussed. It is showed that the simulation represents the head drop about 3%.

A Study on the Development of a Three-dimensional Measurement System for Flow-Structure Interaction Using Digital Image Processing (디지털영상처리기술을 이용한 비접촉식 유체-구조물 연동운동 3차원 측정시스템 개발에 관한 연구)

  • DOH DEOG-HEE;JO HYO-JAE;SANG JI-WOONG;HWANG TAE-GYU;CHO YONG-BEOM;PYEONTN YONG-BEOM
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.1-7
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interaction has been developed. This system consists of four CCD cameras, two for capturing instantaneous flow fields and two for tracking a solid body. The three-dimensional vector fields around a cylinder are measured, while the motion of the cylinder forced by the flow field is measured, simultaneously, with the constructed system. The cylinder is suspended in the working fluid of a water channel, and the surface of the working fluid is forced sinusoidally to make the cylinder bounced. Reynolds number for the mean main stream is about 3500. The interaction between the flow fields and the cylinder motion is examined quantitatively.

A Numerical Study on the Eccentric Rotation Flow Characteristics of Drilling Fluid in Annuli (환형관내 굴착유체의 편심회전유동에 관한 수치해석적 연구)

  • Suh, B.T.;JANG, Y.K.;Kim, D.J.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • The paper concerns numerical study of fully developed laminar flow of a Newtonian water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose(CMC) solution in eccentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured when the inner cylinder rotates at the speed of 0~200 rpm. A numerical analysis considered mainly the effects of annular eccentricity and inner cylinder rotation. The present analysis has demonstrated the importance of the drill pipe rotation and eccentricity. In eccentricity of 0.7 of a Newtonian water, the flow field is recirculation dominated and unexpected behavior is observed. it generates a strong rotation directed layer, that two opposing effects act to create two local peaks of the axial velocity. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated.