• Title/Summary/Keyword: two-fluid equation

Search Result 421, Processing Time 0.024 seconds

An integrated model for pore pressure accumulations in marine sediment under combined wave and current loading

  • Zhang, Y.;Jeng, D.-S.;Zha, H.-Y.;Zhang, J.-S.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.387-403
    • /
    • 2016
  • In this paper, an integrated model for the wave (current)-induced seabed response is presented. The present model consists of two parts: hydrodynamic model for wave-current interactions and poro-elastic seabed model for pore accumulations. In the wave-current model, based on the fifth-order wave theory, ocean waves were generated by adding a source function into the mass conservation equation. Then, currents were simulated through imposing a steady inlet velocity on one domain and pressure outlet on the other side. In addition, both of the Reynolds-Averaged Navier-Stokers (RANS) Equations and $k-{\varepsilon}$ turbulence model would be applied in the fluid field. Once the wave pressures on the seabed calculated through the wave-current interaction model, it would be applied to be boundary conditions on the seabed model. In the seabed model, the poro-elastic theory would be imposed to simulate the seabed soil response. After comparing with the experimental data, the effect of currents on the seabed response would be examined by emphasize on the residual mechanisms of the pore pressure inside the soil. The build-up of the pore water pressure and the resulted liquefaction phenomenon will be fully investigated. A parametric study will also be conducted to examine the effects of waves and currents as well as soil properties on the pore pressure accumulation.

Wave Deformation by Submerged Flexible Circular Disk (몰수된 원형 유연막에 의한 파랑변형)

  • 조일형;김무현
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.116-129
    • /
    • 2000
  • The interaction of incident monochromatic waves with a tensioned, flexible, circular membrane submerged horizontally below free surface is investigated in the frame of three-dimensional linear hydro-elastic theory. The velocity potential is split into two parts i.e. the diffraction potential representing the scattering of incident waves by a rigid circular disk and the radiation potential describing motion induced waves by elastic responses of flexible membrane. The fluid domain is divided into three regions, and the diffraction and radiation potentials in each region are expressed by the Fourier Bessel series. The displacement of circular membrane is expanded with a set of natural functions, which satisfy the membrane equation of motion and boundary conditions. The unknown coefficients in each region are determined by applying the continuity of pressure and normal velocity at the matching boundaries. The results show that various types of wave focusing are possible by controlling the size, submergence depth, and tension of membrane.

  • PDF

Modeling of Smoke Dispersion through a Long Vertical Duct (장대 수직 환기구를 통한 매연 확산의 모델링 연구)

  • Yoon, Sung-Wook
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.287-293
    • /
    • 2003
  • A long vertical duct is an essential installation for extracting smoke to the ground level when a fire occurs in an underground space. Due to the limitations of its basic assumptions, the existing two-layer zone model is unsuitable to model smoke dispersion through a long vertical duct. Therefore, an assessment was made to investigate the applicability of the field model, which is based on the computational fluid dynamics (CFD). A similar configuration to the published experimental work was modeled to test the validity. It is clear that under a consistent decision criterion based on the mass fraction, the field model (CFD) is able to predict that the diffusion front progresses up the shaft with exactly the same rate as that in the empirical correlation equation. This result is for better than the mathematically obtained equations in previously published research. Therefore, it can be said that the field model is an excellent option to predict the smoke dispersion through the long vertical shaft.

The Throughflow Effects on Natural Convection in Horizontal Porous Layer (수평 다공층에서 수직 관통류가 자연대류 열전달에 미치는 영향에 관한 연구)

  • 서석진
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.209-215
    • /
    • 1998
  • This paper investigated the vertical throughflow effects on natural convection due to heating from below in horizontal porous layer. The motion of the fluid in the porous layer is governed by Brinkman-Darcy equation. And compared Critical Rayleigh number in case of throughflow with no throughflow. Investigated Nusslet number, isothermalline and flow with the variation of the strength of throughflow in a constant Rayleigh number. In the numerical analysis, flow is assumed to be two-dimensional and unsteady. The numerical scheme used is a finite-difference method. In the experimental study, Temperature distribution was measured by use of Liquid Crystal film. As a results, indicated that throughflow influences largely on the temperature field and as the strength of throughflow increased, unstability of natural convection decreased. Also it could predict the strength of natural convection with the measured Nusselt number.

  • PDF

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

A CFD Study of the Supersonic Ejector-Pump Flows (초음속 이젝터 펌프 유동에 관한 수치해석)

  • 이영기;김희동;서태원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.58-66
    • /
    • 1999
  • The flow characteristics of supersonic ejectors is often subject to compressibility, unsteadiness and shock wave systems. The numerical works carried out thus far have been of one-dimensional analyses or some Computational Fluid Dynamics(CFD) which has been applied to only a very simplified configuration. For the design of effective ejector-pump systems the effects of secondary mass flow on the supersonic ejector flow should be fully understood. In the present work the supersonic ejector-pump flows with a secondary mass flow were simulated using CFD. A fully implicit finite volume scheme was applied to axisymmetric compressible Navier-Stokes equations. The standard two-equation turbulence model was employed to predict turbulent stresses. The results obtained showed that the flow characteristics of constant area mixing tube types were nearly independent of the secondary flow rate, but the flow fields of ejector system with the second-throat were strongly dependent on the secondary flow rate due to the effect of the back pressure near the primary nozzle exit.

  • PDF

Numerical Formulation of Consolidation Based on Finite Strain Analysis (대변형 압밀방정식의 수식화)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.77-86
    • /
    • 2013
  • Embankments on soft ground experience significant deformation during time-dependent consolidation settlement, as well as an initial undrained settlement. Since infinitesimal strain theory assumes no configuration change and minute strain during deformation, finite strain analysis is required for better prediction of geotechnical problems involving large strain and geometric change induced by imposed loadings. Updated Lagrangian formulation is developed for time-dependent consolidation combining both force equilibrium and mass conservation of fluid, and mechanical constitutive equation is written in Janumann stress rate. Numerical convergence during Newton's iteration in large deformation analysis is improved by Nagtegaal's approach of considering the effect of rotation in mechanical constitutive relationship. Numerical simulations are conducted to discuss numerical reliability and applicability of developed numerical code: deformation of cantilever beam, two-dimensional consolidation. The numerical results show that developed formulation can efficiently describe large deformation problems. Proposed formulation is expected to facilitate the upgrading of a numerical code based on infinitesimal strain theory to that based on finite strain analysis.

Multi-phase Flow Modeling of Vapor Explosion Propagation (증기폭발 전파과정 해석을 위한 다상유동 모델 개발)

  • Park, I. K.;Park, G. C.;K. H. Bang
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.103-117
    • /
    • 1996
  • A mathematical model of vapor explosion propagation is presented. The model predict two-dimensional, transient flow fields and energies of the four fluid phases of melt drop, fragmented debris, liquid coolant and vapor coolant by solving a set of governing equations with the relevant constitutive relations. These relations include melt fragmentation, coolant-phase-change, and heat and momentum exchange models. To allow thermodynamic non-equilibrium between the coolant liquid and vapor, an equation of state for oater is uniquely formulated. A multiphase code, TRACER, has been developed based on this mathematical formulation. A set of base calculations for tin/water explosions show that the model predicts the explosion propagation speed and peak pressure in a reasonable degree although the quantitative agreement relies strongly on the parameters in the constitutive relations. A set of calculations for sensitivity studies on these parameters have identified the important initial conditions and relations. These are melt fragmentation rate, momentum exchange function, heat transfer function and coolant phase change model as well as local vapor fractions and fuel fractions.

  • PDF

An Investigation on Dynamic Behaviors of Single Vortex with CO2 Dilution in a CH4-Air Jet Diffusion Flame (CH4공기 제트 확산화염에서 CO2 첨가에 따른 단일 와동의 동적거동에 관한 연구)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Dae-Yup;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1209-1219
    • /
    • 2003
  • The dynamic behaviors of the single vortex interacting with $CH_4-Air$ jet diffusion flame are investigated numerically. The numerical method is based on a predict-corrector scheme for a low Mach number flow. A two-step global reaction mechanism is adopted as a combustion model. Studies are conducted in fixed initial velocities for the three cases according as where $CO_2$ is added; (1) without dilution, (2) dilution in fuel stream and (3) dilution in oxidizer stream. A single vortex is generated by an axisymmetric jet, which is made by an impulse of a cold fuel when a flame is developed entirely in a computational domain. The simulation shows that $CO_2$ dilution in fuel stream results in somewhat larger vortex radius, and greater amount of entrainment of surrounding fluid than in other cases. Thus, the dilution of $CO_2$ in fuel stream enhances the mixing in single vortex and increases the stretching of the flame surface. The budgets of the vorticity transport equation are examined to reveal the mechanism of vortex formation when $CO_2$ is added. It is found that, in the case of $CO_2$ dilution in fuel stream, the vortex destruction due to volumetric expansion and the vortex production due to baroclinic torque are more dominant than in other cases.

Clinical Study of Primary Lung Cancer (원발성 폐암의 임상적 고찰)

  • 박형주
    • Journal of Chest Surgery
    • /
    • v.22 no.6
    • /
    • pp.1013-1024
    • /
    • 1989
  • One hundred and seventy two patients of primary lung cancer, confirmed by tissue diagnosis at the Dept. of Thoracic and Cardiovascular Surgery in Korea University Hospital between June 1973 and August 1988, were evaluated and restaged with New International TNM classification, and the actuarial survival rate was obtained using Kaplan-Meier equation. The results of analysis were as follows. 1. Male to female ratio was 3.8:1, and prevalent age groups were sixth and seventh decades [76.4 %]. 2. The most common subjective symptom was cough [55.2 %], and 67.4 % of all patients were visited to hospital less than 6 months of symptoms. 3. Positive rates for tissue diagnosis were 100% in open chest or metastatic lymph node biopsy, 80 % in mediastinoscopic biopsy, 60 % in pleural biopsy, 59 % in pleural fluid cytology, 36% in bronchoscopic biopsy, and 22 % in sputum cytology. 4. The order of frequency of cell type was squamous cell carcinoma [53.0%], adenocarcinoma [22.0 %], small cell carcinoma [14.5 %], and so on. 5. Operability and resectability were 44% and 62% respectively, but they were improved recently. 6. Open and closure was done in 44 % of operated patients, uni or bilobectomy in 38 % and pneumonectomy in 24 %. 7. Overall operative mortality rate was 2.6 %. 8. The order of frequency of stage level was S3b [42.0 %], S3a [25.1 %], S1 [15.6%], and so on. 9. Distant metastasis, i.e. stage 4, was noted in 9.5 % of cases, and the sites of frequency were bone, brain, skin, and so on. 10. Actuarial survival rate was 1 year 48.2%, 2 year 36.9%, 3 year 31.2%, and 5 year 20.8%. According to above listed factors, 5 year survival rate was highest in squamous cell carcinoma, lobectomized cases, stage 1, NO in TNM system, and resectable cases. But T factor in TNM system and radiation therapy in nonresectable cases did not show statistical significance in life expectancy.

  • PDF