• Title/Summary/Keyword: two-electrode voltage clamp

Search Result 12, Processing Time 0.032 seconds

Expression and Characterization of G Protein-activated Inward Rectifier $K^+$ Channels in Xenopus Oocytes

  • Kim, Han-Seop;Lee, Chang-Ho;Min, Churl K.
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.471-476
    • /
    • 1998
  • The G protein-activated inwardly rectifying $K^+$ channel (GIRK1) was coex-pressed in Xenopus oocytes along with the $5-HT_{1A}$ receptor, a 7-helix receptor known to be coupled to $K^+$ channels in many neural tissues. Thus, the activation of the $5-HT_{1A}$ receptor by its agonist leads to the opening of GIRK1. The GIRK1 current was measured using the two electrode voltage clamp technique with bath application of 5-HT in the presence of various external potassium concentrations $[K^+]_0$. GIRK1 showed a strong inward rectification since only hyperpolarizing voltages evoked inward currents. $K^{+}$ was the major ion carrier as evidenced by about 44㎷ voltage shift corresponding to a 10-fold external 〔$K^+$〕 change. 5-HT induced a concentration-dependent inward $K^+$ current ($EC_{50}{\equation omitted}10.7nM$) which was blocked by $Ba^{2+}$. Pertussis toxin (PTX) pre-treatment reduced the $K^+$ current by as much as about 70%, suggesting that PTX-sensitive G protein ($G_i or G_o$ type) are involved in the $5-HT_{1A}$ receptor-GIRK1 coupling in Xenopus oocytes.

  • PDF

A Study on the Ouabain-induced Transient Inward Current(TI) in the Rabbit Sinoatrial Node (동방결절에서 Ouabain에 의하여 발생하는 일과성 내향전류(TI)에 관한 연구)

  • Choi, Jung-Yun;Hong, Chang-Yee;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.19 no.2
    • /
    • pp.101-111
    • /
    • 1985
  • Transient inward current (TI) was studied by the two micro-electrode voltage clamp technique in the sinoatrial node of the rabbit. The author confirmed that in $10^{-6}$ M ouabain TI was found in the SA node and investigated the effects of ions, $(Na^+,\;K^+,\;Ca^{2+})$, $\beta-agonist$ (isoprenaline), local anesthetics (quinidine, lidocaine) and Ca-blockers ($Co^{2+}$, verapamil, diltiazem) on the TI recorded during depolarizing voltage clamp pulses to -40 and -20 mV. The results obtained were as follows ; 1) $10^{-6}M$ ouabain increased the frequency of sinus action potential and decreased the amplitude, especially overshoot of action potential. TI was induced by the depolarizing voltage clamp Pulses and the magnitude of the slow inward current (isi) decreased and the time course was slowed by the same depolarizing pulses. 2) 30% $Na^{+}$ and 24mM $K^+$ decreased by $10^{-6}M$ ouabain and 6 mM $Ca^{2+}$ and $10^{-7}M$ isoprenaline increased TI, $i_{si}$ and current oscillations. 3) Quinidine $(5\times10^{-7}M)$ reduced TI and $i_{si}$ but lidocaine $(10^6\;-10^5M)$ didn't reduced or increase TI. Current oscillations increased and isi decreased by lidocaine. 4) Ca-blockers decreased the amplitude and the frequency of sinus action potential. TI and $i_{si}$ decreased significantly but were not abolished completely at the concentrations used in this experiment. Verapamil and diltiazem had inhibitory action on TI in $2\times10^{-7}M$ concentration and showed very slow recovery after wasting out with normal Tyrode solution.

  • PDF

Synthesis and Two Electrode Voltage Clamp Assay of PPADS Derivatives as the P2X Antagonists

  • Lee, Jung-Sun;Moon, Hyun-Duck;Park, Chul-Seung;Kim, Yong-Chul
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.178.3-178.3
    • /
    • 2003
  • P2X receptors are ligand gated cation channels activated by the binding of extracellular adenosine 5'-triphosphate (ATP) and classified into 7 subtype families. $P2X_1$ receptors are abundantly expressed in smooth muscle mediates blood vessel and mediate constriction upon binding of neuronal ATP. The activation of $P2X_3$ receptor by ATP has been known to initiate the pain signaling in the peripheral nervous system, which is involved in chronic inflammatory nociception and neuropathic pain by nerve injury. (omitted)

  • PDF

Molecular Mechanism of L-Pyroglutamic Acid Interaction with the Human Sour Receptor

  • Sanung Eom;Shinhui Lee;Jiwon Lee;Minsu Pyeon;Hye Duck Yeom;Jung Hee Song;Eun Ji Choi;Moeun Lee;Junho H Lee;Ji Yoon Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.203-210
    • /
    • 2023
  • Taste is classified into five types, each of which has evolved to play its respective role in mammalian survival. Sour taste is one of the important ways to judge whether food has gone bad, and the sour taste receptor (PKD2L1) is the gene behind it. Here, we investigated whether ʟ-pyroglutamic acid interacts with sour taste receptors through electrophysiology and mutation experiments using Xenopus oocytes. R299 of hPKD2L1 was revealed to be involved in ʟ-pyroglutamic acid binding in a concentration-dependent manner. As a result, it is possible to objectify the change in signal intensity according to the concentration of ʟ-pyroglutamic acid, an active ingredient involved in the taste of kimchi, at the molecular level. Since the taste of other ingredients can also be measured with the method used in this experiment, it is expected that an objective database of taste can be created.

TEVC Studies of potent Antagonists of Human $P2X_3$ Receptor

  • Moon, Hyun-Duk;Lee, Jung-Sun;Park, Chul-Seung;Kim, Yong-Chul
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.55-55
    • /
    • 2003
  • P2X$_3$ receptor, a member of P2 purine receptors, is a ligand-gated ion channel activated by extracellular ATP as an endogenous ligand, and highly localized in peripheral and central sensory neurons. The activation of P2X3 receptor by ATP as the pronociceptive effect has been known to initiate the pain signaling involved in chronic inflammatory nociception and neuropathic pain by nerve injury, implicating the possibility of new drug development to control pains. In this study, we have developed a two electrode voltage clamp (TEVC) assay system to evaluate the inhibitory activity of several newly synthesized PPADS and a novel non-ionic antagonist against ATP activation of human P2X3 receptor. PPADS derivatives include several pyridoxine and pyridoxic acid analogs to study the effects of phosphate and aldehyde functional groups in PPADS. All new PPADS analogs were less potent than PPADS at human P2X$_3$ receptors, however, LDD130, a non-ionic analog showed potent antagonistic property with $IC_{50}$/ of 8.34 pM. In order to uncover the structure activity relationships of LDD130, and design new structural analogs, we synthesized and investigated a few structural variants of LDD130, and the results will be discussed in this presentation.

  • PDF

Effects of Ginsenosides on $GABA_A$ Receptor Channels Expressed in Xenopus Oocytes

  • Choi, Se-Eun;Choi, Seok;Lee, Jun-Ho;Paul J.Whiting;Lee, Sang-Mok;Nah, Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Ginsenosides, major active ingredients of Panax ginseng, are known to regulate excitatory ligand-gated ion channel activity such as nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides affect inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human recombinant $GABA_A$ receptor (${\alpha}_1{\beta}_1{\gamma}_{2s}$) channel activity expressed in Xenopus oocytes using a two-electrode voltage-clamp technique. Among the eight individual ginsenosides examined, namely, $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$ and $Rg_2$, we found that Rc most potently enhanced the GABA-induced inward peak current ($I_{GABA}$). Ginsenoside Rc alone induced an inward membrane current in certain batches of oocytes expressing the $GABA_A$ receptor. The effect of ginsenoside Rc on $I_{GABA}$ was both dose-dependent and reversible. The half-stimulatory concentration ($EC_{50}$) of ginsenoside Rc was 53.2$\pm$12.3 $\mu$M. Both bicuculline, a $GABA_A$ receptor antagonist, and picrotoxin, a $GABA_A$ channel blocker, blocked the stimulatory effect of ginsenoside Rc on $I_{GABA}$. Niflumic acid (NFA) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), both $CI^{-1}$ channel blockers, attenuated the effect of ginsenoside Rc on I$I_{GABA}$. This study suggests that ginsenosides regulated $GABA_A$ receptor expressed in Xenopus oocytes and implies that this regulation might be one of the pharmacological actions of Panax ginseng.

Quercetin Inhibits the 5-Hydroxytryptamine Type 3 Receptor-mediated Ion Current by Interacting with Pre-Transmembrane Domain I

  • Lee, Byung-Hwan;Jung, Sang-Min;Lee, Jun-Ho;Kim, Jong-Hoon;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Chang, Choon-Gon;Kim, Hyung-Chun;Han, YeSun;Paik, Hyun-Dong;Kim, Yangmee;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.69-73
    • /
    • 2005
  • The flavonoid, quercetin, is a low molecular weight substance found in apple, tomato and other fruit. Besides its antioxidative effect, quercetin, like other flavonoids, has a wide range of neuropharmacological actions including analgesia, and motility, sleep, anticonvulsant, sedative and anxiolytic effects. In the present study, we investigated its effect on mouse 5-hydroxytryptamine type 3 ($5-HT_{3A}$) receptor channel activity, which is involved in pain transmission, analgesia, vomiting, and mood disorders. The $5-HT_{3A}$ receptor was expressed in Xenopus oocytes, and the current was measured with the two-electrode voltage clamp technique. In oocytes injected with $5-HT_{3A}$ receptor cRNA, quercetin inhibited the 5-HT-induced inward peak current ($I_{5-HT}$) with an $IC_{50}$ of $64.7{\pm}2.2{\mu}M$. Inhibition was competitive and voltage-independent. Point mutations of pre-transmembrane domain 1 (pre-TM1) such as R222T and R222A, but not R222D, R222E and R222K, abolished inhibition, indicating that quercetin interacts with the pre-TM1 of the $5-HT_{3A}$ receptor.

Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Choi, Sun-Hye;Kim, Hyeon-Joong;Jung, Seok-Won;Hwang, Sung-Hee;Pyo, Mi-Kyung;Rhim, Hyewhon;Kim, Hyoung-Chun;Kim, Ho-Kyoung;Lee, Sang-Mok;Nah, Seung-Yeol
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.410-417
    • /
    • 2016
  • Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance ${\alpha}7$ nicotinic acetylcholine receptor (${\alpha}7$ nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of ${\alpha}7$ nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current ($I_{ACh}$) in Xenopus oocytes expressing the ${\alpha}7$ nAChR. $I_{ACh}$ was measured with a two-electrode voltage clamp technique. In oocytes injected with ${\alpha}7$ nAChR copy RNA, quercetin enhanced $I_{ACh}$, whereas quercetin glycosides inhibited $I_{ACh}$. Quercetin glycosides mediated an inhibition of $I_{ACh}$, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of $I_{ACh}$ inhibition by quercetin glycosides was Rutin${\geq}$Rham1>Rham2. Quercetin glycosides-mediated $I_{ACh}$ enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated $I_{ACh}$ inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated ${\alpha}7$ nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the ${\alpha}7$ nAChR in a differential manner.

A Role for the Carbohydrate Portion of Ginsenoside Rg3 in Na+ Channel Inhibition

  • Kim, Jong-Hoon;Hong, Yoon-Hee;Lee, Jun-Ho;Kim, Dong-Hyun;Nam, Ghilsoo;Jeong, Sang Min;Lee, Byung-Hwan;Lee, Sang-Mok;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.137-142
    • /
    • 2005
  • We showed recently that ginsenosides inhibit the activity of various types of ion channel. Here we have investigated the role of the carbohydrate component of ginsenoside $Rg_3$ in the inhibition of $Na^+$ channels. The channels were expressed in Xenopus oocytes by injecting cRNAs encoding rat brain Nav1.2 ${\alpha}$ and ${\beta}1$ subunits, and analyzed by the two-electrode voltage clamp technique. Treatment with $Rg_3$ reversibly inhibited the inward $Na^+$ peak current ($I_{Na}$) with an $IC_{50}$ of $32.2{\pm}4.5{\mu}M$, and the inhibition was voltage-dependent. To examine the role of the sugar moiety, we prepared a straight chain form of the second glucose and a conjugate of this glucose with 3-(4-hydroxyphenyl) propionic acid hydrazide (HPPH). Neither derivative inhibited $I_{Na}$. Treatment with the carbohydrate portion of ginsenoside $Rg_3$, sophorose [${\beta}-D-glucopyranosyl$ ($1{\rightarrow}2$)-${\beta}-glucopyranoside$], or the aglycone (protopanaxadiol), on their own or in combination had no effect on $I_{Na}$. These observations indicate that the carbohydrate portion of ginsenoside $Rg_3$ plays an important role in its effect on the $Na^+$ channel.

Mechanism of $Ca^{2+}$ -activated $Cl^-$ Channel Activation by Ginsenosides in Xenopus Oocytes

  • Park, Seok;Jung, Se-Yeon;Park, Seong-Hwan;Ko, Sung-Ryong;Hyewon Rhim;Park, Chul-Seung;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.168-175
    • /
    • 2000
  • Relatively little is known about the signaling mechanism of ginseng saponins (ginsenosides), active ingredients of ginseng, in non-neuronal cells. Here, we describe that ginsenosides utilize a common pathway of receptor-mediated signaling pathway in Xenopus oocytes: increase in intracellular $Ca^{2+}$ concentration via phospholipase C (PLC) and $Ca^{2+}$ mobilization. Ginsenosides induced a marked and robust artivation of $Ca^{2+}$-activated Cl- channels in Xenopus oocytes. The effect of ginsenosides was completely reversible, in a dose-dependent manner with EC$_{50}$ of 4.4 $\mu\textrm{g}$/mi, and specifically blocked by niflumic acid, an inhibitor of $Ca^{2+}$-activated Cl- channel. Intracellular injection of BAPIA abolished the effect of ginsenosides. Intracellular injection of GTP${\gamma}$S also abolished the effect of ginsenosides. The effect of gin senosides on $Ca^{2+}$-activated Cl- currents was greatly reduced by the intracellular injection of heparin, an IP$_3$ receptorantagonist or the pretreatment of PLC inhibitor. These results indicate that ginsenosides activate endogenous $Ca^{2+}$-activated Cl- channels via the activation of PLC and the release of $Ca^{2+}$ from the IP$_3$-sensitive intracellular store following the initial interaction with membrane component(s) from extracellular side. This signaling pathway of ginsenosides may be one of the action mechanisms for the pharmacological effects of ginseng.ts of ginseng.

  • PDF