• 제목/요약/키워드: two-dimensional treatment

검색결과 447건 처리시간 0.027초

Alterations of Protein Expression in Macrophages in Response to Candida albicans Infection

  • Shin, Yu-Kyong;Kim, Ki-Young;Paik, Young-Ki
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.271-279
    • /
    • 2005
  • Although macrophages are an important first line of cellular defense, they are unable to effectively kill phagocytosed C. albicans. To determine the physiological basis of this inability, we investigated the alterations of macrophage proteins caused by C. albicans infection. Since the formation of C. albicans hyphae caused cell death, proteins were prepared 3 h after infection and examined by two-dimensional gel electrophoresis (2-DE). The most prominent changes were in glycolytic enzymes, which could have caused energy depletion of the infected cells. Also changed were proteins involved in maintenance of cellular integrity and NO production. Treatment of the macrophages with either cytochalasin D or taxol did not alter their inability to kill C. albicans. Our results indicate that multiple factors contribute to cell death as the pathogenic form of C. albicans becomes fully active inside macrophage cells.

Prediction of solute rejection and modelling of steady-state concentration polarisation effects in pressure-driven membrane filtration using computational fluid dynamics

  • Keir, Greg;Jegatheesan, Veeriah
    • Membrane and Water Treatment
    • /
    • 제3권2호
    • /
    • pp.77-98
    • /
    • 2012
  • A two-dimensional (2D) steady state numerical model of concentration polarisation (CP) phenomena in a membrane channel has been developed using the commercially available computational fluid dynamics (CFD) package CFX (Ansys, Inc., USA). The model incorporates the transmembrane pressure (TMP), axially variable permeate flux, variable diffusivity and viscosity, and osmotic pressure effects. The model has been verified against several benchmark analytical and empirical solutions from the membrane literature. Additionally, the model is able to predict the rejection of an arbitrary solute by the membrane using a pore model, given some basic knowledge of the geometry of the solute molecule or particle, and the membrane pore geometry. This allows for predictive design of membrane systems without experimental determination of the membrane rejection for the specified operating conditions. A demonstration of the model is presented against experimental results for two uncharged test compounds (sucrose and PEG1000) from the literature. The model will be extended to incorporate charge effects, transient simulations, three-dimensional (3D) geometry and turbulent effects in future work.

제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감 (Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials)

  • 이두호
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

구치부 부분 무치악 결손에서 유용한 세 가지 임프란트 수복법들의 응력분산에 관한 3차원 유한요소법적 비교연구 (THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE STRESS DISTRIBUTION IN THE THREE TREATMENT OPTIONS OF IMPLANTS RESTORATIONS FOR THE POSTERIOR PARTIAL EDENTULISM)

  • 김일규;이성호;류승현;최진호;한예숙;손충렬;변효인
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권3호
    • /
    • pp.175-180
    • /
    • 2004
  • In this study, three treatment options to replace two posterior missing teeth were investigated using three dimensional finite element analysis: two wide(${\phi}5.0mm$) implants(the experimental model I), two standard(${\phi}3.75mm$) implants(the experimental model II), and three standard(${\phi}3.75mm$) implants(the experimental model III). Two kinds of load case were applied ; 1) perpendicular on occlusal surface(axial load), parallel on occlusal surface(lateral load). 2) perpendicular on occlusal surface(3mm lateral to central point). The results obtained from this study were as follows; value of Von-mises stress (equivalent stress) was smallest in the two wide implant among the three experimental models. It was reported that the diameter is the efficient factor than osseointegrated surface area.

Maxillary protraction using customized mini-plates for anchorage in an adolescent girl with skeletal Class III malocclusion

  • Liang, Shuran;Xie, Xianju;Wang, Fan;Chang, Qiao;Wang, Hongmei;Bai, Yuxing
    • 대한치과교정학회지
    • /
    • 제50권5호
    • /
    • pp.346-355
    • /
    • 2020
  • The treatment of skeletal Class III malocclusion in adolescents is challenging. Maxillary protraction, particularly that using bone anchorage, has been proven to be an effective method for the stimulation of maxillary growth. However, the conventional procedure, which involves the surgical implantation of mini-plates, is traumatic and associated with a high risk. Three-dimensional (3D) digital technology offers the possibility of individualized treatment. Customized mini-plates can be designed according to the shape of the maxillary surface and the positions of the roots on cone-beam computed tomography scans; this reduces both the surgical risk and patient trauma. Here we report a case involving a 12-year-old adolescent girl with skeletal Class III malocclusion and midface deficiency that was treated in two phases. In phase 1, rapid maxillary expansion and protraction were performed using 3D-printed mini-plates for anchorage. The mini-plates exhibited better adaptation to the bone contour, and titanium screw implantation was safer because of the customized design. The orthopedic force applied to each mini-plate was approximately 400-500 g, and the plates remained stable during the maxillary protraction process, which exhibited efficacious orthopedic effects and significantly improved the facial profile and esthetics. In phase 2, fixed appliances were used for alignment and leveling of the maxillary and mandibular dentitions. The complete two-phase treatment lasted for 24 months. After 48 months of retention, the treatment outcomes remained stable.

Comparative Evaluation of Two-dimensional Radiography and Three Dimensional Computed Tomography Based Dose-volume Parameters for High-dose-rate Intracavitary Brachytherapy of Cervical Cancer: A Prospective Study

  • Madan, Renu;Pathy, Sushmita;Subramani, Vellaiyan;Sharma, Seema;Mohanti, Bidhu Kalyan;Chander, Subhash;Thulkar, Sanjay;Kumar, Lalit;Dadhwal, Vatsla
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4717-4721
    • /
    • 2014
  • Background: Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Materials and Methods: Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned. All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Results: Mean doses received by 100% and 90% of the target volume were $4.24{\pm}0.63$ and $4.9{\pm}0.56$ Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were $2.88{\pm}0.72$, $2.5{\pm}0.65$ and $2.2{\pm}0.57$ times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were $1.80{\pm}0.5$, $1.48{\pm}0.41$ and $1.35{\pm}0.37$ times higher than ICRU rectal reference point. Conclusions: Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.

An integrated elastomer substrate with a lens array and pixel elements for three-dimensional liquid crystal displays

  • Hong, Jong-Ho;Kim, Yeun-Tae;Kim, Yun-Hee;Lee, Byoung-Ho;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • 제13권2호
    • /
    • pp.55-59
    • /
    • 2012
  • In this paper, a concept of an integrated elastomer substrate for a three-dimensional (3D) liquid crystal display based on the integral-imaging method is presented. The elemental lens array and columnar spacers were integrated into one of the two substrates, an elastomer substrate, through an imprinting process. The integrated elastomer substrate was capable of maintaining the uniform liquid crystal (LC) cell gap and promoting homeotropic LC alignment without any surface treatment. The monolithic approach reported herein will provide a key component for 3D displays with enhanced portability through a more than 40% weight reduction compared with the conventional integral-imaging method.

Effects of Aquatic Exercise on Upper Extremity Function and Postural Control During Reaching in Children With Cerebral Palsy

  • Yongjin Jeon;Hye-Seon Jeon;Chunghwi Yi;Ohyun Kwon;Heonseock Cynn;Duckwon Oh
    • 한국전문물리치료학회지
    • /
    • 제30권2호
    • /
    • pp.128-135
    • /
    • 2023
  • Background: Despite the fact that aquatic exercise is one of the most popular alternative treatment methods for children with cerebral palsy (CP), there are few research regarding its effectiveness. Objects: The purpose of this study was to examine the effects of aquatic exercise on upper extremity function and postural control during reaching in children with CP. Methods: Ten participants (eight males and two females; 4-10 years; Gross Motor Function Classification System levels II-IV) with spastic diplegia were recruited to this study. The aquatic exercise program consisted of four modified movements that were selected from the Halliwick 10-point program to enhance upper extremity and trunk movements. The participants attended treatment two times a week for 6 weeks, averaging 35 minutes each session. The Box and Block Test (BBT), transferring pennies in the Bruininks-Oseretsky Test (BOT), and pediatric reaching test (PRT) scores were used as clinical measures. Three-dimensional motion analysis system was used to collect and analyze kinematic data. Differences in BBT and BOT values among pre-treatment, post-treatment, and retention (after 3 weeks) were analyzed using a Friedman test. In addition, the PRT scores and variables (movement time, hand velocity, straightness ratio, and number of movement units) from the three-dimensional motion analysis were tested using a Wilcoxon signed-rank test. The significance level was established at p < 0.05. When the results appeared to be statistically significant, a post-hoc test for multiple comparisons was performed with the Wilcoxon signed-rank test. Results: All clinical measures, which included BBT, transferring pennies of BOT, and PRT, were significantly increased between pre-intervention and post-intervention scores and between pre-intervention and retention scores after treatment (p = 0.001). Three-dimensional motion analysis mostly were significantly improved after treatment (p = 0.001). Conclusion: Aquatic exercise may help to improve body function, activity, and participation in children with varying types of physical disabilities.

Efficacy of Cranial Orthosis for Plagiocephaly Based on 2D and 3D Evaluation

  • Hiroki Kajita;Ichiro Tanaka;Hiroaki Komuro;Shigeru Nishimaki;Isao Kusakawa;Koichiro Sakamoto
    • Archives of Plastic Surgery
    • /
    • 제51권2호
    • /
    • pp.169-181
    • /
    • 2024
  • Background With the advent of cranial orthoses as therapeutic medical devices for the treatment of severe positional head deformities in Japan, an increasing number of patients are being treated with them. However, assessing the effectiveness of a treatment is often difficult due to the use of different metrics. This study aimed to evaluate the effectiveness of cranial orthoses for deformational plagiocephaly using two- (2D) and three-dimensional (3D) evaluation metrics. Methods We conducted a retrospective study of infant patients with deformational plagiocephaly who underwent cranial orthosis treatment. We evaluated the severity of deformational plagiocephaly using cranial asymmetry (CA) and the cranial vault asymmetry index (CVAI) as 2D metrics, and anterior and posterior symmetry ratios as 3D metrics. The patients were divided into 24 subgroups based on the initial severity of each outcome and their age at the start of treatment. We analyzed the changes in outcomes and correlations within improvements across the age and severity categories. Results Overall, 1,038 infants were included in this study. The mean CA, CVAI, and anterior and posterior symmetry ratios improved significantly after cranial orthosis treatment. The improvement in each score was greater in patients with more severe initial deformities and in those who underwent treatment at a younger age. Conclusion Cranial orthosis treatment was effective in correcting deformational plagiocephaly in infants, as demonstrated by improvements in both 2D and 3D metrics. Patients with more severe initial deformities and those who underwent treatment at a younger age showed greater improvement.

H-S 유동의 점성효과를 고려한 원심압축기 회전차내부의 준3차원 유동해석 (Quasi-3-Dimensional Analysis of Compressible Flow within a Blade Row Including Viscous Effect in H-S Flow)

  • 오종식;조강래
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3287-3296
    • /
    • 1994
  • For the numerical computation of three-dimensional compressible flow field within a blade row in a centrifugal compressor, a quasi 3-dimensional solver which combines a reversible B-B flow and an irreversible H-S flow using finite element methods was developed. In a reversible B-B flow, the governing coordinates are modified in order to be applied to any type of turbomachinery, and two kinds of stream functions are introduced in order to make the Kutta condition exactly satisfied. In an irreversible H-S flow, the changes of entropy in the irreversible governing equations are determined not by empirical source but by the theoretical treatment of dissipation forces. The dissipation forces are obtained from the distribution of shear stresses in the flow passage which are given from the wall shear stresses using the exponential functions. A more accurate quasi-3-dimensional solver is established where the effect of body forces is involved in the non-axisymmetric H-S flow. Some numerical results obtained from authors' previous studies for axial flow machines assure that the present method is able to predict well as long as the flow is subsonic and not under strong viscous effect.