• Title/Summary/Keyword: two-dimensional shapes

Search Result 360, Processing Time 0.025 seconds

Improved Breast Irradiation Techniques Using Multistatic Fields or Three Dimensional Universal Compensators (Multistatic Field또는 3차원 공용보상체를 사용한 유방의 방사선 조사법의 평가)

  • Han Youngyih;Cho Jae Ho;Park Hee Chul;Chu Sung Sil;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • Purpose : In order to improve dose homogeneity and to reduce acute toxicity in tangential whole breast radiotherapy, we evaluated two treatment techniques using multiple static fields or universal compensators. Materials and Methods : 1) Multistatic field technique : Using a three dimensional radiation treatment planning system, Adac Pinnacle 4.0, we accomplished a conventional wedged tangential plan. Examining the isodose distributions, a third field which blocked overdose regions was designed and an opposing field was created by using an automatic function of RTPS. Weighting of the beams was tuned until an ideal dose distribution was obtained. Another pair of beams were added when the dose homogeneity was not satisfactory. 2) Universal compensator technique : The breast shapes and sizes were obtained from the CT images of 20 patients who received whole breast radiation therapy at our institution. The data obtained were averaged and a pair of universal physical compensators were designed for the averaged data. DII (Dose Inhomogeneity Index : percentage volume of PTV outside $95\~105\%$ of the prescribed dose) $D_{max}$ (the maximum point dose in the PTV) and isodose distributions for each technique were compared. Results : The multistatic field technique was found to be superior to the conventional technique, reducing the mean value of DII by $14.6\%$ (p value<0.000) and the $D_{max}$ by $4.7\%$ (p value<0.000). The universal compensator was not significantly superior to the conventional technique since it decreased $D_{max}$ by $0.3\%$ (p value=0.867) and reduced DII by $3.7\%$ (p value=0.260). However, it decreased the value of DII by maximum $18\%$ when patients' breast shapes fitted in with the compensator geometry. Conclusion : The multistatic field technique is effective for improving dose homogeneity for whole breast radiation therapy and is applicable to all patients, whereas the use of universal compensators is effective only in patients whose breast shapes fit inwith the universal compensator geometry, and thus has limited applicability.

A Physical Design Method of Storage Structures for MOLAP Systems of Data Warehouse (데이터 웨어하우스의 다차원 온라인 분석처리 시스템을 위한 저장구조의 물리적 설계기법)

  • Lee Jong-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.297-312
    • /
    • 2005
  • Aggregation is an operation that plays a key role in multidimensional OLAP (MOLAP) systems of data warehouse. Existing aggregation operations in MOLAP have been proposed for file structures such as multidimensional arrays. These tile structures do not work well with skewed distributions. This paper presents a physical design methodology for storage structures ni MOLAP that use the multidimensional tile organizations adapting to a skewed distribution. In uniform data distribution, we first show that the performance of multidimensional analytical processing is highly affected by the similarity of the shapes between query regions and page regions in the domain space of the multidimensional file organizations. And than, in skewed distributions, we reflect the effect of data distributions on the design by using the shapes of the normalized query regions that are weighted with data density of those query regions. Finally, we demonstrate that the physical design methodology theoretically derived is indeed correct in real environments. In the two-dimensional file organizations, the results of experiments indicate that the performance of the proposed method is enhanced by more than seven times over the conventional method. We expect that the performance will be more enhanced when the dimensionality is more than two. The result confirms that the proposed physical design methodology is useful in a practical way.

  • PDF

Numerical Analysis on Development of Nozzle Shape for NOVEC Gas Extinguishing System (NOVEC가스 소화설비용 노즐 형상 설계에 대한 수치해석)

  • Yun, Jeong In;Jung, Kyung Kuk;Kim, Ji Sung;Kim, Sung Yoon;Rho, Beom-Seok;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.939-944
    • /
    • 2018
  • Clean fire extinguishing agents refer to chemical that can replace Halon 1211 and Halon 1310 according to the Montreal Protocol fermented to protect the Earth's ozone layer. In Korea and abroad, system standardization and performance evaluation of clean fire extinguishing agents are being carried out. This paper proposes an optimal nozzle shape by modeling and numerical analysis of various nozzle shapes based on general clean fire extinguishing system. The ejection speed of the nozzle can be improved by studying three - dimensional modeling of the nozzle for two shapes, Type A and B. Flow analysis was performed on the two types of nozzles and the gas velocity and pressure distribution were measured with different nozzle diameters. It was confirmed that the jetting speed was changed at the nozzle outlet according to the number and diameter of the nozzle holes. The flow rate increased with increasing the pressure regardless of the nozzle hole diameter. Based on the results obtained from the experiment, the K-factor value was deduced. Finally, a nozzle with a 12-hole structure with a 5-mm nozzle hole was proposed.

3D Modeling of Safety Leg Guards Considering Skin Deformation and shape (피부길이변화를 고려한 3차원 다리보호대 모델링)

  • Lee, Hyojeong;Eom, Ran-i;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.24 no.4
    • /
    • pp.555-569
    • /
    • 2015
  • During a design process of a protective equipment for sports activities, minimizing movement restrictions is important for enhancing its functions particularly for protection. This study presents a three-dimensional(3D) modeling methodology for designing baseball catcher's leg guards that will allow maximum possible performance, while providing necessary protection. 3D scanning is performed on three positions frequently used by a catcher during the course of a game by putting markings on the subject's legs at 3cm intervals : a standing, a half squat with knees bent to 90 degrees and 120 degrees of knee flexion. Using data obtained from the 3D scan, we analyzed the changes in skin length, radii of curvatures, and cross-sectional shapes, depending on the degree of knee flexion. The results of the analysis were used to decide an on the ideal segmentation of the leg guards by modeling posture. Knee flexions to 90 degrees and to $120^{\circ}$ induced lengthwise extensions than a standing. In particular, the vertical length from the center of the leg increases to a substantially higher degree when compared to those increased from the inner and the outer side of the leg. The degree of extension is varied by positions. Therefore, the leg guards are segmented at points where the rate of increase changed. It resulted in a three-part segmentation of the leg guards at the thigh, the knee, and the shin. Since the 120 degree knee-flexion posture can accommodate other positions as well, the related 3D data are used for modeling Leg Guard (A) with the loft method. At the same time, Leg Guard (B) was modeled with two-part segmentation without separating the knee and the shin as in existing products. A biomechanical analysis of the new design is performed by simulating a 3D dynamic analysis. The analysis revealed that the three-part type (A) leg guards required less energy from the human body than the two-part type (B).

Moving Object Extraction and Relative Depth Estimation of Backgrould regions in Video Sequences (동영상에서 물체의 추출과 배경영역의 상대적인 깊이 추정)

  • Park Young-Min;Chang Chu-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.247-256
    • /
    • 2005
  • One of the classic research problems in computer vision is that of stereo, i.e., the reconstruction of three dimensional shape from two or more images. This paper deals with the problem of extracting depth information of non-rigid dynamic 3D scenes from general 2D video sequences taken by monocular camera, such as movies, documentaries, and dramas. Depth of the blocks are extracted from the resultant block motions throughout following two steps: (i) calculation of global parameters concerned with camera translations and focal length using the locations of blocks and their motions, (ii) calculation of each block depth relative to average image depth using the global parameters and the location of the block and its motion, Both singular and non-singular cases are experimented with various video sequences. The resultant relative depths and ego-motion object shapes are virtually identical to human vision.

A Study on the Lap Joint $CO_2$ Laser Welding of Different Gauge Sheets Using ANOVA in Characteristic Zones (특징영역별 분산분석에 의한 이종두께 겹치기 $CO_2$ 레이저 용접에 대한 연구)

  • 이경돈
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • The laser welding in the automotive industries has been used widely for the butt joint of blank sheets rather than the lap joint of automotive body panels. But as a substitute far the spot welding of automotive body panels, the so called three dimensional laser welding will be important far the body panel engineers. Specially the laser welding of body panels with a smooth weld line is applied increasingly, for example, to the side panels. So far, some criteria of the laser weld quality was suggested by in-house regulations or national standards from experiences and/or rule of thumbs. In the manufacturing places, a go or no-go criterion is adopted because of the simplicity or a lack of rational criteria. It is true specially for the selection of the process parameters, which gives the basic causes for the good quality of laser welds. In this study, the effects of joint combination, gap and welding speed on the lap joint $CO_2$ laser welding of two mild steel sheets with different thicknesses are obtained through a $2{\times}3{\times}7$ factorial experiment. The results of the weld quality are statistically analysed using analysis of variance (ANOVA) and compared between two characteristic zones, which are separated by the type of sectional shapes and the level of input energy per volume. The thickness combinations are 0.8mm/1.2mm, 1.2mm/0.8mm of mild steel sheets. The welding speed covers from the deep penetration to the partial penetration. The gap size has three levels of no-gap, 0.16m, and 0.26mm. The bead width, penetration depth and input energy per volume are measured and used as the weld quality criteria.

Aerodynamic characteristics investigation of Megane multi-box bridge deck by CFD-LES simulations and experimental tests

  • Dragomirescu, Elena;Wang, Zhida;Hoftyzer, Michael S.
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.161-184
    • /
    • 2016
  • Long-span suspension bridges have evolved through the years and with them, the bridge girder decks improved as well, changing their shapes from standard box-deck girders to twin box and multi-box decks sections. The aerodynamic characteristics of the new generation of twin and multiple-decks are investigated nowadays, to provide the best design wind speeds and the optimum dimensions such bridges could achieve. The multi-box Megane bridge deck is one of the new generation bridge decks, consisting of two side decks for traffic lanes and two middle decks for railways, linked between them with connecting beams. Three-dimensional CFD simulations were performed by employing the Large Eddy Simulation (LES) algorithm with a standard Smagorinsky subgrid-scale model, for $Re=9.3{\times}10^7$ and angles of attack ${\alpha}=-4^{\circ}$, $-2^{\circ}$, $0^{\circ}$, $2^{\circ}$ and $4^{\circ}$. Also, a wind tunnel experiment was performed for a scaled model, 1:80 of the Megane bridge deck section, for $Re=5.1{\times}10^5$ and the aerodynamic static coefficients were found to be in good agreement with the results obtained from the CFD-LES model. However the aerodynamic coefficients determined individually, from the CFD-LES model, for each of the traffic and railway decks of the Megane bridge, varied significantly, especially for the downstream traffic deck. Also the pressure distribution and the effect of the spacing between the connecting beams, on the wind speed profiles showed a slight increase in turbulence above the downstream traffic and railway decks.

An experimental investigation into cavitation behaviour and pressure characteristics of alternative blade sections for propellers

  • Korkut, Emin;Atlar, Mehmet;Wang, Dazheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.81-100
    • /
    • 2013
  • During the final quarter of the last century considerable efforts have been spent to reduce the hull pressure fluctuations caused by unsteady propeller cavitation. This has resulted in further changes in propeller design characteristics including increased skew, tip unloading and introduction of "New Blade Sections" (NBS) designed on the basis of the so-called Eppler code. An experimental study was carried out to investigate flow characteristics of alternative two-dimensional (2-D) blade sections of rectangular planform, one of which was the New Blade Section (NBS) developed in Newcastle University and other was based on the well-known National Advisory Committee for Aeronautics (NACA) section. The experiments comprised the cavitation observations and the measurements of the local velocity distribution around the blade sections by using a 2-D Laser Doppler Anemometry (LDA) system. Analysis of the cavitation tests demonstrated that the two blade sections presented very similar bucket shapes with virtually no width at the bottom but relatively favourable buckets arms at the suction and pressure sides for the NACA section. Similarly, pressure analysis of the sections displayed a slightly larger value for the NBS pressure peak. The comparative overall pressure distributions around the sections suggested that the NBS might be more susceptible to cavitation than the NACA section. This can be closely related to the fundamental shape of the NBS with very fine leading edge. Therefore a further investigation into the modification of the leading edge should be considered to improve the cavitation behaviour of the NBS.

PIXEL-BASED CORRECTION METHOD FOR GAFCHROMIC®EBT FILM DOSIMETRY

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong;Ju, Sang-Gyu;Shin, Jung-Suk;Kim, Jin-Sung;Park, Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.670-679
    • /
    • 2010
  • In this paper, a new approach using a pixel-based correction method was developed to fix the non-uniform responses of flat-bed type scanners used for radiochromic film dosimetry. In order to validate the method's performance, two cases were tested: the first consisted of simple dose distributions delivered by a single port; the second was a complicated dose distribution composed of multiple beams. In the case of the simple individual dose condition, ten different doses, from 8.3 cGy to 307.1 cGy, were measured, horizontal profiles were analyzed using the pixel-based correcton method and compared with results measured by an ionization chamber and results corrected using the existing correction method. A complicated inverse pyramid dose distribution was made by piling up four different field shapes, which were measured with GAFCHROMIC$^{(R)}$EBT film and compared with the Monte Carlo calculation; as well as the dose distribution corrected using a conventional method. The results showed that a pixel-based correction method reduced dose difference from the reference measurement down to 1% in the flat dose distribution region or 2 mm in a steep dose gradient region compared to the reference data, which were ionization chamber measurement data for simple cases and the MC computed data for the complicated case, with an exception for very low doses of less than about 10 cGy in the simple case. Therefore, the pixel-based scanner correction method is expected to enhance the accuracy of GAFCHROMIC$^{(R)}$EBT film dosimetry, which is a widely used tool for two-dimensional dosimetry.

Dynamic Analysis of 3 Different Cross-Sectional Shapes of a Fill Dam using 3D FEM Analysis (3차원 유한요소해석에 의한 필 댐의 3가지 단면 형상을 고려한 지진해석)

  • Choi, Byoungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.37-43
    • /
    • 2015
  • Dam movements are identified in real-time with measuring instruments for dam maintenance. However, for dams that have aged, the measuring instruments that were installed during the dam construction are frequently malfunctioning or completely failing altogether. Precision safety diagnosis is being executed for dams that are national facilities Type 1. During the diagnosis, a safety assessment is conducted for the dam body. Normally, during the analysis of dam safety, the widest cross-section is selected and a two-dimensional numerical analysis is taken place for the cross-section. However, numerous researchers have recently looked into applying the 3-dimensional numerical analysis program developments to precisely analyze the structure of the dam, as well as the surrounding strata, and the lower dam strata. In this study, PLAXIS 3D, a geotechnical generic FEM analysis program, was used to conduct dam safety assessments for earthquakes. The following were compared and analyzed: considering the seismic properties of the dam body with all zoned structures reflected as one rock-fill zone together with the dam body, considering the dam body as the rock-fill zone and the core zone, and the numerical analysis results. Thus, the study was aimed to analyze the impact properties of seismic waves according to the different zones.