• Title/Summary/Keyword: two-dimensional shapes

Search Result 360, Processing Time 0.024 seconds

Experimental Study on Hydraulic Characteristics and Vorticity Interactions of Floating Breakwaters (부유식방파제의 수리특성 및 와 상호작용에 관한 실험적 연구)

  • Yoon, Jae-Seon;Son, Hyok-Jun;Chun, Si-Young;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.175-183
    • /
    • 2010
  • In this study, laboratory experiments are conducted to investigate flow-fields around floating breakwaters by using the LDV(Laser Doppler Velocimetry) system. The LDV system is a well-known equipment to measure fluid particle velocities in laboratory experiments. Although the system requires great efforts and enormous time for measurements, it can provide precise velocity fields comparing to other available equipments. Various types of drafts and shapes for breakwaters are employed in laboratory experiments to analyze a relation between flow-fields and vorticity. A series of numerical experiments are also carried out by using a two-dimensional Navier-Stokes equations model. Numerically predicted results are compared with laboratory measurements.

Characteristics of High-Speed Railway Tunnel Entry Compression Wave (고속철도 터널입구에서 형성되는 압축파의 특성에 관한 연구)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Lee, Jong-Su;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.234-242
    • /
    • 1999
  • Flow phenomena such as the pressure transients Inside a high-speed railway tunnel and the Impulsive waves at the exit of the tunnel are closely associated with the characteristics of the entry compression wave, which is generated by a train entering the tunnel. Tunnel entrance hood may be an effective means for alleviating the Impulsive waves and pressure transients. The objective of the current work is to explore the effects of the train nose shape and the entrance hood on the characteristics of the entry compression wave. Numerical calculations using the method of characteristics were applied to one-dimensional, unsteady, compressible flow field with respect to high-speed railway/tunnel systems. Two types of the entrance hoods and various train nose shapes were employed to reveal their influences on the entry compression wave for a wide range of train speeds. The results showed that the entry compression wave length increases as the train nose becomes longer and the train speed becomes lower. The entry compression wave length in the tunnel with hood becomes longer than that of no hood. Maximum pressure gradient in the compression wavefront reduces by the entrance hood. The results of the current work provide useful data for the design of tunnel entrance hood.

Fabrication of Pair-Photonic Crystal Arrays using Multiple-Exposure Nanosphere Lithography (다중노광 나노구 리소그라피를 이용한 쌍-광자결정 어레이 제작)

  • Yeo, Jong-Bin;Han, Gwang-Min;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.245-249
    • /
    • 2010
  • Two dimensional(2D) pair-photonic crystals (pair-PCs) have been fabricated by a multiple-exposure nanosphere lithography (MENSL) method using the self-assembled nanospheres as lens-mask patterns and the collimated laser beam as a multiple-exposing source. The arrays of the 2D pair-PCs exhibited variable lattice structures and shape the control of rotating angle (${\Theta}$), tilting angle (${\gamma}$) and the exposure conditions. In addition, the base period or filling factor of pair-PCs as well as their shapes could be changed by experimental conditions and nanosphere size. A 1.18-${\mu}m$-thick resist was spincoated on Si substrate and the multiple exposure was carried out at change of ${\gamma}$ and ${\Theta}$. Images of prepared 2D pair-PCs were observed by SEM. We believe that the MENSL method is a suitable useful tool to realize the pair-periodic arrays of large area.

The Effect of Piston Bowl Shape on Behavior of Vapor Phase in a GDI Engine (직분식 가솔린기관 내에서 피스톤 형상이 연료혼합기 거동에 미치는 영향)

  • Hwang, Pil-Su;Gang, Jeong-Jung;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.614-621
    • /
    • 2002
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure was 5.1MPa. Two dimensional spray fluorescence image of vapor phase was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC 90$^{\circ}$, 80$^{\circ}$, 70$^{\circ}$, and 60$^{\circ}$. With a fuel injection timing of BTDC 90$^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC 60$^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

The Effect of Piston Bowl Shape on Behavior of Vapor Phases in a GDI Engine (피스톤 형상에 따른 직분식 가솔린기관 내에서의 연료혼합기 거동특성 연구)

  • Hwang, Pil-Su;Kang, Jeong-Jung;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.915-920
    • /
    • 2001
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B, and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC $90^{\circ},\;80^{\circ},\;70^{\circ},\;and\;60^{\circ}$. With a fuel injection timing of BTDC $90^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC $60^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

  • PDF

Elastic Analysis of Unbounded Solids with Anisotropic Inclusions (이방성 함유체를 포함하는 무한고체의 탄성해석)

  • Choe, Seong-Jun;Ra, Won-Seok;Lee, Jeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1993-2006
    • /
    • 1999
  • A Volume Integral Equation Method (VIEM) is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids. Through the analysis of plane elastodynamic and elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions and voids.

The Flow Analysis of Supercavitating Cascade by Nonlinear Theory (비선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • In this study comparison of experiment results with the computed results of linear theory and nonlinear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade using nonlinear theory, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. The results compared linear theory and nonlinear theory with the experiment results of the study are as follows: The tolerances of nonlinear theory were larger than those of linear theory in case of ${\alpha}<10^{\circ}$. Moreover the computational range of attack angles could be expanded from ${\alpha}=10^{\circ}$ to ${\alpha}=25^{\circ}$, the flow field of supercavitating cascade could be analyzed in the condition which the wake thickness and the length of cavity are a variable. The shapes of cavity were changed sensitively according to various variable such as attack angles, pitches and wake thickness, and the pressure distribution of hydrofoil surface was identical almost disregarding wake thickness but changed largely according to attack angle and the length of cavity. Lift coefficient and drag coefficient were reduced according to increasing of wake thickness but the influences of wake thickness were very little in the situation of small pitch and long cavity.

  • PDF

Time-domain Computation of Broadband Noise due to Turbulence - cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soo-Gab;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.263-269
    • /
    • 2006
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipolar broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and the full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to turbulence-cascade interaction.

Modelling of ZMR process for fabrication of SOI (SOI소자 제죠를 위한 ZMR공정의 모델링)

  • 왕종회;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.100-108
    • /
    • 1995
  • Heat transfer plays a critical role in determining interface location and shape in ZMR process, which is used for the fabrication of silicon - on - insulator structure. In this work, the two - dimensional pseudo - steady - state ZMR model has been developed that can simulate the heat transfer process during ZMR process. It contains the radiation, convection and conduction heat transfer and determines the interface shapes. Numerical solutions from the model include flow field in the molten zone, temperature field in the full SOl structure and the location of solid/liquid interface in the silicon thin film and silicon substrate. We examined the effects of the various system parameters on the temperature profiles and the interface shape.

  • PDF

Distribution of Potential Rise as a Function of Shape of Grounding Electrodes

  • Gil, Hyoung-Jun;Choi, Chung-Seog;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.73-79
    • /
    • 2007
  • In order to analyze the potential rise of grounding systems installed in buildings, a hemispherical grounding simulation system was studied. Potential rise was measured and analyzed regarding the shape and distance of the grounding electrodes by using this system. The system was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The potential rise was measured in real time by the horizontal moving probe of be potentiometer. The test grounding electrodes were fabricated through reducing the grounding electrode installed in real buildings such as the ground rod, grounding grid and so on. The potential rise was displayed in a two-dimensional profile and was analyzed regarding the shapes of the ground electrodes. The potential rise of the grounding grid combined with a ground rod was the lowest of every grounding electrode tested. The proposed results can be applicable to evaluating ground potential rise in grounding systems, and the analytical data can be used to stabilize the electrical installations and prevent electrical disasters.