• Title/Summary/Keyword: two-dimensional river model

Search Result 184, Processing Time 0.027 seconds

Analysis of pollutant dispersion mechanism by restored canal at Dongbin harnor (수로의 복원으로 인한 동빈내항에서의 오염확산 양상의 해석)

  • Park, Seong-Soo;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.187-190
    • /
    • 2008
  • The water quality at the Dongbin Harbor at Pohang city, is getting worse due to the sewage and the wastewater from communities. In this syudy, RMA2 and RMA4, which is two-dimensional depth-averaged finite element numerical model, were employed to simulate the improvement of water quality from inflowing water through an inland canal to be planned connecting Dongbin Harbor and the Hyeongsan River. For the comparative result of the numerical model, both the present condition and the restoration condition (after construction of an inland canal) is simulated. The results of these conditions reasonably simulate a real situation at the Dongbin Harbor. After construction of an inland canal, the water quality at the Dongbin Harbor will be compared to the fresh water quality of the Hyeongsan River at the steady state. Futhermore, The result of simulation will be used to decide the most effective dimension of the canal.

  • PDF

Development of a Grid Based Two-Dimensional Numerical Method for Flood Inundation Modeling Using Globally-Available DEM Data (범용 DEM 데이터를 이용한 2차원 홍수범람 모형의 개발)

  • Lee, Seung-Soo;Lee, Gi-Ha;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.659-663
    • /
    • 2010
  • In recent, flood inundation damages by hydraulic structure failures have increased drastically and thus a variety of countermeasures were needed to minimize such damages. A real-time flood inundation prediction technique is essential to protect and mitigate flood inundation damages. In the context of real time flood inundation modeling, this study aims to develop a grid based two-dimensional numerical method for flood inundation modeling using globally-available DEM data: SRTM with $90m{\times}90m$ spatial resolution. The newly-developed model guarantees computational efficiency in terms of geometric data processing by direct application of DEM for flood inundation modeling and also have good compatibility with various types of raster data when compared to a commercial model such as FLUMEN. The model, which employed the leap-frog algorithm to solve shallow water and continuity equations, can simulate inundating flow from channel to lowland and also returning flow from lowland to channel by comparing water levels between channel and lowland in real time. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results had good agreements with the field-surveyed data in terms of inundated area and also showed physically-acceptable velocity vector maps with respect to inundating and returning flows.

  • PDF

Numerical Experiment of Low Salinity Due to the Variation of Yangtze River Discharge in East China Sea (동중국해역에서 양자강 유출량 변화에 따른 저염확산 수치실험)

  • 황재동;조규대;정희동;박성은
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.53-57
    • /
    • 2003
  • Low salinity water appears by outflow of fresh water from the Yangtze River in southwestern sea of the Korean peninsula. The water volume discharged form the Yangtze River is not constant with year, according to the time series data recorded in the past, the maximum value of the discharged volume is two times as high asr minimum value. Therefore, the distribution of low salinity water over study area with different discharged fresh water volume is studied using numerical model, Princeton Ocean Model (POM). POM is three dimensional circulation model selecting a $\sigma$­coordinate. According to the result of numerical simulation by the Model, current velocity on the continental slope is faster than those in other regions, current which flows toward the central part of the Yellow Sea through western part of Jeju exists, and also, southward flow along the coastal region exists. the greater discharged volume from the Yangrze River is. the lower salinity water appears closer to Jeju.

  • PDF

Comparative Analysis for Numerical Modeling of Tidal Current on Geum River Estuary (금강하구 해역에 대한 조류 수치모델링의 비교 해석)

  • Kang, Sung-Jun;Park, Young-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3583-3589
    • /
    • 2010
  • The semi-implicit scheme proposed by Backhaus is introduced to solve two-dimensional shallow water equation. This mothod is applied for the numerical model solving surface elevation and velocity field of Geum River estuary. For the verification of the method, numerical solutions by this model are compared with ones by Heap's well known explicit model. Solutions of two models resemble each other. The time-step chosen for the semi-implicit scheme turned out to be 3 to 6 times longer than explicit model depending on the stringent CFL criterion. The computation time could be reduced at least 50%. It was proved that this scheme is easy to handle dry banks which can be seen in Geum River estuary and numerical stability is obtained for long time computation.

Analysis of Hydraulic Effect by River Dredging in a Meandering Channel (하도준설이 사행하천에 미치는 수리학적 영향 분석)

  • KIM, Tae-Hyeong;KIM, Byung-Hyun;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.14-30
    • /
    • 2015
  • This paper attempted to analyze the hydraulic effects that the dredging can take as an alternative to reduce possible damages of flooding due to the overflow of river levee in meandering rivers, where riverbed aggradation, seepage and erosion may occur. In order to make a hydraulic analysis in a section of meandering rivers, a two-dimensional hydraulic analysis model, RMA-2, was selected. The GIS was applied to construct two-dimensional finite element grids to consider the hydraulic conditions before and after dredging. The water surface elevations, depths, velocities, and tractive forces were compared before and after the dredging. The difference of water surface elevation between the inside and outside of river was turned out to be the maximum value of 0.58m under the design flood condition. It could be evaluated that the tractive force at the bank decreased about 42 to 67% on average for all the sections. These results could give valuable information that the dredging of the stream channel at the meandering sections decreased the risk of overflow, seepage and erosion of the banks. The methodologies given in this study will contribute to mitigating the flood damages in the surrounding farmlands.

Analysis of the Effects of Bathymetry Data on Hydraulic Results - Daecheong Reservoir - (저수지 모델의 지형정보 엽력자료가 수리결과에 미치는 영향 분석 - 대청호를 대상으로 -)

  • Lee, Jae-Yil;Seo, Se-Deok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2009
  • A lot of research on the application of GIS has been conducted in the field of water quality management. The function of a geometric data acquisition for reservoir and river models, however, is not enough to satisfy multiuser' convenience. CE-QUAL-W2 is a two-dimensional(2D) longitudinal/vertical hydrodynamic and water quality model for surface water bodies, modeling eutrophication processes such as temperature-nutrient-algae and sediment relationships. The purpose of this study is to analyzing which bathymetry information affects hydraulic results. There are consisted of three scenarios under consideration. The first scenario takes into account only tribatary type data such as Heoin and Okchen river. The second scenario, Heoin river constructs to tributary and Okchen river constructs by branch. Last scenario constructs Heoin and Okchen river by branch. The RMSE error results for the first, second and third scenarios are 0.61, 0.36 and 0.28 respectively.

Development and Hydraulic Characteristics of Continuous Block System in River Bank Protection (II) - Comparison of Numerical Analysis with Physical Modeling - (일체형 식생호안블록 시스템 개발 및 수리특성 연구(II) -일체형 호안블록시스템 수치모의를 통한 효과 분석-)

  • Jang, SukHwan
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.99-109
    • /
    • 2008
  • This research focused on analyzing and comparing between the results of hydraulic physical modeling and the results of numerical modeling of continuous block system in river bank protection which is newly developed in-situ block system. To verify the hydraulic physical modeling and review the effectiveness, the numerical modeling was needed against the model test results for vegetation application or not. HEC-RAS model was for 1 dimensional numerical analysis and SMS was for 2 dimensional numerical analysis. The results of the two dimensional numerical simulation, under the condition of roughness coefficient calibration, show similar and rational consequence against the physical modeling. These satisfactory results show that the accomplished results of hydraulic modeling and the predicted results of numerical modeling corresponded reasonably each others.

  • PDF

Application of Flood Prevention Measures Using Detailed Topographic Data of River and Lowland (하천-제내지의 상세 지형자료를 이용한 수해방지대책 적용)

  • LEE, Jae-Yeong;HAN, Kun-Yeun;KEUM, Ho-Jun;KO, Hyun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2020
  • Recently, the incidence of flooding in Korea has decreased by the measures by central and local governments, however the scale of damage is increasing due to the improvement of living standard. One of the causes of such flood damage is natural causes such as rainfall exceeding the planned frequency of flood control under climate change. In addition, there are artificial causes such as encroachment of river spaces and management problems in upstream basins without consideration of downstream damage potential by regional development flood. In this study, in order to reduce the inundation damage caused by flooding of river, the situation at the time of inundation damage was reproduced by the detailed topographic data and 2D numerical model. Therefore, the effect of preparing various disaster prevention measures for the lowland was simulated in advance so that quantitative evaluation could be achieved. The target area is Taehwa river basin, where flooding was caused by the flooding of river waters caused by typhoon Chaba in October 2016. As a result of rainfall-discharge and two-dimensional analysis, the simulation results agree with the observed in terms of flood depth, flood arrival time and flooded area. This study examined the applicability of hydraulic analysis on river using two-dimensional inundation model, by applying detailed topographic data and it is expected to contribute to establish of disaster prevention measures.

Assessment of Attraction Efficiency of By-pass Fishway at Dalseong Weir According to Operating Attraction Waterway (유인수로의 운영에 따른 달성보 인공하도식 어도의 유인효율 평가)

  • Park, Ji Hyun;Ku, Young Hun;Baek, Kyong Oh;Kim, Young Do
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this study, the attraction efficiency of the by-pass fishway installed at Dalseong Weir in Nakdong River was assessed according to operation of the attraction waterway by using River2D which is a two-dimensional physical habitat simulation model. The model was calibrated and validated through the measured water elevation. The attraction efficiency of the fishway was evaluated at the low flow condition because the target fish, Zacco platypus (Z. platypus), have moved frequently up and downstream at the spawning season from April to June. From simulation results, it can be deduced that the attraction efficiency at situation of open attraction waterway is superior to that of close attraction waterway. Also it is shown that velocity field at inner region of the fishway is suitable for migration of the fish.

A numerical study on the dispersion of the Yangtze River water in the Yellow and East China Seas

  • Park, Tea-Wook;Oh, Im-Sang
    • Journal of the korean society of oceanography
    • /
    • v.39 no.2
    • /
    • pp.119-135
    • /
    • 2004
  • A three-dimensional numerical model using POM (the Princeton Ocean Model) is established in order to understand the dispersion processes of the Yangtze River water in the Yellow and East China Seas. The circulation experiments for the seas are conducted first, and then on the bases of the results the dispersion experiments for the river water are executed. For the experiments, we focus on the tide effects and wind effects on the processes. Four cases of systematic experiments are conducted. They comprise the followings: a reference case with no tide and no wind, of tide only, of wind only, and of both tide and wind. Throughout this study, monthly mean values are used for the Kuroshio Current input in the southern boundary of the model domain, for the transport through the Korea Strait, for the river discharge, for the sea surface wind, and for the heat exchange rate across the air-sea interface. From the experiments, we obtained the following results. The circulation of the seas in winter is dependent on the very strong monsoon wind as several previous studies reported. The wintertime dispersion of the Yangtze River water follows the circulation pattern flowing southward along the east coast of China due to the strong monsoon wind. Some observed salinity distributions support these calculation results. In summertime, generally, low-salinity water from the river tends to spread southward and eastward as a result of energetic vertical mixing processes due to the strong tidal current, and to spread more eastward due to the southerly wind. The tide effect for the circulation and dispersion of the river water near the river mouth is a dominant factor, but the southerly wind is still also a considerable factor. Due to both effects, two major flow directions appear near the river mouth. One of them is a northern branch flow in the northeast area of the river mouth moving eastward mainly due to the weakened southerly wind. The other is a southern branch flow directed toward the southeastern area off the river mouth mostly caused by tide and wind effects. In this case, however, the tide effect is more dominant than the wind effect. The distribution of the low salinity water follows the circulation pattern fairly well.