• Title/Summary/Keyword: two-dimensional polymer

Search Result 187, Processing Time 0.03 seconds

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

Dimensional Changes of Ceromer Crown by Water Absorption (치과용 심미수복재료 세로모에서 수분흡수와 체적 변화에 관한 연구)

  • Lee, Jong-Hyuk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • Statement of problem: The increasing demand for esthetic restorations has been required developing new materials for tooth colored restoration. Ceromer(Ceramic Optimized Polymer) has some advantages over porcelain, and has gained increasing popularity in restorative dentistry. However, there is little information on the dimensional changes in a clinical restoration in moist conditions. Purpose: This study examined the dimensional changes in Ceromer restorations with a clinical crown shape that were fabricated in a clinical manner. Material and methods: The crowns for the maxillary central incisor were fabricated with two Ceromers($BelleGlass^{(R)}$ and $Targis^{(R)}$) using a similar clinical restoration manufacturing technique. A total of twenty specimens were prepared and immersed in distilled water at room temperature to allow for water absorption. The weight, height and width were measured at 24, 72 and 168 hours. The accumulated ratios of the changes were calculated and evaluated using a paired t-test and an independent independent t-test. Results: The dimensions and weight increased with increasing soaking time. $Targis^{(R)}$ showed significant differences in height and weight between 24 hours and the other times(P<.05). $BelleGlass^{(R)}$ showed significant differences in width and weight between 24 hours and the other times. The two materials showed different changing patterns of the dimensions but there were no statistically significant differences between them. Conclusion: The dimensions and weight of the Ceromer restorations were changed by water absorption. The clinical crown shaped specimen showed more complicated dimensional changes than the simplified specimens.

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

Classification Technique of Kaolin Contaminants Degree for Polymer Insulator using Electromagnetic Wave (방사전자파를 이용한 고분자애자의 오손량 분류기법)

  • Park Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.162-168
    • /
    • 2006
  • Recently, diagnosis techniques have been investigated to detect a Partial Discharge associated with a dielectric material defect in a high voltage electrical apparatus, However, the properties of detection technique of Partial Discharge aren't completely understood because the physical process of Partial Discharge. Therefore, this paper analyzes the process on surface discharge of polymer insulator using wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time~frequency domain. As it is important to develop a non-contact method for detecting the kaolin contamination degree, this research analyzes the electromagnetic waves emitted from Partial Discharge using wavelet transform. This result experimentally shows the process of Partial Discharge as a two-dimensional distribution in the time-frequency domain. Feature extraction parameter namely, maximum and average of wavelet coefficients values, wavelet coefficients value at the point of $95\%$ in a histogram and number of maximum wavelet coefficient have used electromagnetic wave signals as input signals in the preprocessing process of neural networks in order to identify kaolin contamination rates. As result, root sum square error was produced by the test with a learning of neural networks obtained 0.00828.

Signal Classification of Electromagnetic Wave for Contaminated Degree on Polymer Insulator (고분자 애자 오손정도의 전자파 신호 분석)

  • Park, Jae-Jun;Choi, In-Hyuk;Jung, Myeong-Yeon;Lee, Seung-Wook;Seo, Euy-Won;Ka, Pyeong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.662-665
    • /
    • 2004
  • Recently, diagnosis techniques have been investigated to detect a partial discharge associated with a dielectric material defect in a high-voltage electrical apparatus However, the properties of detection technique of PD aren't completely understood because the physical process of PD. Therefore, this paper analyzes the process on Surface Discharge of Polymer Insulator using Wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time-frequency domain. As it is important to develop a non-contact method for detecting the Contamination Degree, this paper analyzes the electromagnetic waves emitted from PD using Wavelet transform. This paper experimentally shows the process of PD as a two-dimensional distribution in the time-frequency domain. This method is shown to be useful for detecting prediction of contamination degree.

  • PDF

Electrospinning Technology for Novel Energy Conversion & Storage Materials

  • Jo, Seong-Mu;Kim, Dong-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Electrospinning has known to be very effective tool for production of versatile one-dimensional (1D) nanostructured materials such as nanofibers, nanorod, and nanotubes and for easily assembly to two-, three-dimensional(2D, 3D) nanostructures such as thin film, membrane, and nonwoven web, etc. We have studied on the electrospinning technology for novel energy storage and conversion materials such as advanced separator, dye sensitized solar cell, supercapacitor, etc. High heat-resistive nanofibrous membrane as a new separator for future lithium ion polymer battery was prepared by electrospinning of PVdF based composite solution. The novel nanofibrous composite nonwovens have tensile strength of above 50 MPa and modulus of above 1.3 GPa. The internal structure of the electrospun composite nanofiber with a diameter of few hundreds nanometer were composed of core-shell nanostructure. And also electrospun $TiO_2$ nanorod/nanosphere based dye-sensitized solar cells with high efficiency are successfully prepared. Some battery performance will be introduced.

  • PDF

Structural behaviors of notched steel beams strengthened using CFRP strips

  • Yousefi, Omid;Narmashiri, Kambiz;Ghaemdoust, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • This paper presents the findings of experimental and numerical investigations on failure analysis and structural behavior of notched steel I-beams reinforced by bonded Carbon Fiber Reinforced Polymer (CFRP) plates under static load. To find solutions for preventing or delaying the failures, understanding the CFRP failure modes is beneficial. One non-strengthened control beam and four specimens with different deficiencies (one side and two sides) on flexural flanges in both experimental test and simulation were studied. Two additional notched beams were investigated just numerically. In the experimental test, four-point bending method with static gradual loading was employed. To simulate the specimens, ABAQUS software in full three dimensional (3D) case and non-linear analysis method was applied. The results show that the CFRP failure modes in strengthening of deficient steel I-beams include end-debonding, below point load debonding, splitting and delamination. Strengthening schedule is important to the occurrences and sequences of CFRP failure modes. Additionally, application of CFRP plates in the deficiency region prevents crack propagation and brittle failure.

Design and fabrication of temperature-independent AWG-WDM devices using polymer overcladding (폴리머 상부클래드를 이용한 온도무의존 AWG 파장분할 다중화 소자의 설계 및 제작)

  • Han, Young-Tak;Kim, Duk-Jun;Shin, Jang-Uk;Park, Sang-Ho;Park, Yoon-Jung;Sung, Hee-Kyeng
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.135-141
    • /
    • 2003
  • In arrayed waveguide grating (AWG) devices whose waveguides were composed of polymer with negative thermo-optic coefficient as overcladding, and silica with positive thermo-optic coefficient as both core and undercladding, we investigated the temperature dependence of the central wavelength using two-dimensional SFDM. From these results, it was confirmed that the temperature dependence can be nearly eliminated by adjusting the refractive index of the cladding and the thickness of the silica thin film upper-loaded on the core. Based on the numerical calculations, the AWG device with polymer overcladding was fabricated. and its optical characteristics were compared with those of the orginal silica AWG device. The introduction of polymer overcladding decreased the temperature dependence of the central wavelength from 0.0130 nm/$^{\circ}C$ to 0.0028 nm/$^{\circ}C$ without deteriorating the insertion loss and crosstalk characteristics.

Empirical Study for the Effects of Filler Shape on the Thermal Expansion Coefficient of PP Composites (충전제 함량 및 형태에 따른 PP복합체의 열팽창계수 변화에 대한 실증적 연구)

  • Hwang, Hyo-Yeon;Jeoung, Sun-Kyoung;Shim, Je-Hyeon;Kim, Jae-Min;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.352-356
    • /
    • 2010
  • The effects of the filler shapes and contents on the coefficient of thermal expansion (CTE) for polypropylene (PP) composites which included three dimensional ellipsoids ($a_1>a_2>a_3$), as determined by two aspect ratios (${\rho}_\alpha=a_1/a_3$ and ${\rho}_\beta=a_1/a_2$) were analyzed by the theoretical approach proposed by Lee and Paul and compared with the experimental results. The shapes of fillers in the composites were various, such as spherical, fiber, disc, and ellipsoid, using barium sulfate, glass fiber, and mica. The longitudinal CTE of barium sulfate whose shape was sphere ($\rho_\alpha=\rho_\beta=1$) decreased. For the glass fiber, primary aspect ratio decreased with the filler content, and longitudinal CTE decreased as filler contents increased. Normal CTE initially increased in the lower filler content. For the mica, longitudinal and transverse CTE decreased but normal CTE increased in the lower filler content like predicted values.

Fine Feature Sensing and Restoration by Tactile Examination of PVDF Sensor

  • Yoon, Seong-Sik;Kang, Sung-Chul;Lee, Woo-Sub;Choi, Hyouk-Ryeol;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.942-947
    • /
    • 2003
  • An important signal processing problem in PVDF sensor is the restoration of surface information from electric sensing signals. The objectives of this research are to design a new texture sensing system and to develop a new signal processing algorithm for signals from the sensor to be tangibly displayed by tangible interface systems. The texture sensing system is designed to get surface information with high resolution and dynamic range. First, a PVDF sensor is made of piezoelectric polymer (polyvinylidene fluoride) strips molded in a silicon rubber and attached in a rigid cylinder body. The sensor is mounted to a scanning system for dynamic sensing. Secondly, a new signal processing algorithm is developed to restore surface information. The algorithm consists of the two-dimensional modeling of the sensor using an identification method and inverse filtering from sensing signals into estimated surface information. Finally the two-dimensional surface information can be experimentally reconstructed from sensing signals using the developed signal processing algorithm.

  • PDF