• Title/Summary/Keyword: two-dimensional polymer

Search Result 187, Processing Time 0.027 seconds

A Viscoelasitc Finite Element Analysis of Thermal Nanoimprint Lithography Process (열-나노임프린트 공정의 점탄성 유한요소해석)

  • Kim, Nam-Woong;Kim, Kug-Weon;Sin, Hyo-Chol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Nanoimprint lithography (NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. To successfully imprint a nano-sized pattern, the process conditions such as temperature, pressure, and time should be appropriately selected. This starts with a clear understanding of polymer material behavior during the NIL process. In this work, the squeezing of thin polymer films into nanocavities during the thermal NIL has been investigated based upon a two-dimensional viscoelastic finite element analysis in order to understand how the process conditions affect a pattern quality. The simulations have been performed within the viscoelastic plateau region and the stress relaxation effect has been taken into account.

  • PDF

Extended Bifurcated Hydrogen Bonds Network Material of Copper(II) Complexes with 2-Dimethylaminomethyl-3-hydroxypyridine: Structures and Magnetic Properties

  • Kang, Sung-Kwon;Lee, Hong-Woo;Sengottuvelan, Nallathambi;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.95-99
    • /
    • 2012
  • Two novel copper(II) complexes, [Cu(dmamhp)$(H_2O)_2(SO_4)]_n$ (1) and [Cu(dmamhp)$(NO_3)_2(H_2O)]{\cdot}H_2O$ (2) [dmamhp = 2-dimethylaminomethyl-3-hydroxypyridine] have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 displays a double one-dimensional chains structure, in which each chain is constituted with the distorted octahedral copper(II) complex bridged through bidentate sulfate ligands resulting in a coordination polymer. The bifurcated hydrogen bonds and $\pi-\pi$ interactions play important roles in the formation of the double chains structure. On the other hand, compound 2 adopts a distorted square pyramidal geometry around copper(II) ion and exists as a discrete monomer. There are intermolecular bifurcated hydrogen bonds and $\pi-\pi$ stacking interactions between the monomeric units. The magnetic properties revealed that the paramagnetic behaviors are dominantly manifested and there are no intermolecular magnetic interactions in both compound 1 and 2.

Signal analysis of surface discharge and electromagnetic wave for insulator by kaolin contamination (카올린으로 오손된 애자의 표면방전 및 방사전자파의 신호 분석)

  • Park, Jae-Jun
    • The Journal of Information Technology
    • /
    • v.7 no.3
    • /
    • pp.113-118
    • /
    • 2004
  • Recently, diagnosis techniques have been investigated to detect a partial discharge associated with a dielectric material defect in a high voltage electrical apparatus. However, the properties of detection technique of PD aren't completely understood because the physical process of PD. Therefore, this paper analyzes the process on Surface Discharge of Polymer Insulator using Wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time frequency domain. As it is important to develop a non-contact method for detecting the Contamination Degree, this research analyzes the electromagnetic waves emitted from PD using Wavelet transform. This result experimentally shows the process of PD as a two-dimensional distribution in the time-frequency domain. The method is shown to be useful for detecting prediction of contamination degree.

  • PDF

Numerical Study of Secondary Coating Die Geometry Effects on High Speed Optical Glass Fiber Coating Process (광섬유 2차 코팅다이 형상 변화에 따른 유리섬유 고속 코팅공정 영향성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • The protective double layer polymer coatings on silica optical fibers are realized by wet-on-wet liquid coating process and they play an important role in final quality of mass produced optical fibers. This numerical study aims to analyze the effects of secondary coating die design parameters by employing two dimensional axisymmetric model of coating cup and coating die geometry and computational fluid dynamics simulations which include temperature dependent viscosity of polymer coating liquids and viscous dissipation heating. Under high speed fiber drawing conditions and pressurized coating liquid supply, the effects of converging die angle are investigated in order to appreciate the change of coating liquid flow patterns such as flow recirculation zone near coating die as well as primary and secondary coating layer thicknesses. The auxiliary coating die to converging coating die is also tested and the results find that this concept is advantageous in achieving stable double layer coatings on silica glass fiber.

Preparation and Swelling Behavior of Cross-Linked Films of Hydroxypropyl Chitosan Possessing Cholesteric Liquid-Crystalline Order (Cholesteric 액정질서를 지닌 Hydroxypropyl Chitosan 가교필름의 제조와 팽윤거동)

  • 마영대;김경희
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.418-430
    • /
    • 2000
  • A new hydroxylpropyl chitosan (HPCTO) capable of forming both thermotropic and lyotropic liquid crystalline phases was synthesized by reaction of alkali chitosan with propylene oxide and its solid films cross-linked with glyoxal were prepared by casting the liquid crystalline solution in methanol. The thermal and swelling properties of the cross-linked films were investigated. The films displayed fingerprint patterns characteristic of cholesteric liquid-crystalline phase, and their pitches increased with increasing temperature and cross-linker concentration. The cross-linked samples exhibited an anisotropic swelling in both water and methanol, suggesting that the two-dimensional cross-linking preferentially performs between HPCTO molecules. The degree of anisotropy highly depended on the solvent, but hardly on the cross-linker concentration investigated.

  • PDF

A Review of Graphene Nanoplatelets in Nanocomposites: Dispersion (그래핀나노플레이트 나노복합소재 분산법 연구 동향)

  • Park, Sang-Yu;Hwang, Ji-Young;Park, Young Su;Kang, Seung Beom
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.321-328
    • /
    • 2020
  • Recently, development of nanocomposite materials for applying in various fields has been actively underway. Of the two-dimensional nanomaterials, graphene nanoplatelets (GnPs) are highly utilized because of their excellent properties, but a problem of strong aggregations is occurred when GnPs are fabricated with polymer nanocomposites, so there is a growing demand for research on the methods of dispersion. In this review paper, the research on GnP nanocomposites with improved properties through various dispersion methods of GnPs. The welldispersed GnP nanocomposites will be applied in more diverse fields in the future.

Syntheses, Structures, and Characterization of Two Novel Copper(II) and Cadmium(II) Compounds Based on Pyridyl Conjugated 1,2,3-Triazole

  • Hong, Jin-Long;Qu, Zhi-Rong;Ma, Hua-Jun;Wang, Gai-Gai;Zhao, Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1495-1500
    • /
    • 2014
  • Two new complexes with 5-methyl-1-(pyridine-3-yl)-1H-1,2,3-triazole-4-carboxylic acid (Hmptc) ligand: [$Cd(mptc)_2(H_2O)_4$] (1) and $[Cu(mptc)_4{\cdot}2H_2O]_n$ (2) were prepared and their crystal structures were determined by single crystal X-ray diffraction analyses. In complex 1, the Cd(II) ions coordinates with the pyridyl nitogen atom from the Hmptc ligand, forming a mononuclear Cd(II) compound. Complex 2 exhibits a novel two-dimensional (2D) polymer in which four Hmptc ligands stabilize the Cu(II) atom. And the coordination involves one nitrogen atom of the triazole, one oxygen atom of the carboxylic acid and the pyridyl nitrogen atom. In addition, FT-IR and solid-state fluorescent emission spectroscopy of two compounds have been determined.

Nano-Structures on Polymers Evolved by Ion Beam/Plasma

  • Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.76-76
    • /
    • 2012
  • Surface engineering of polymers has a broad array of scientific and technological applications that range from tissue engineering, regenerative medicine, microfluidics and novel lab on chip devices to building mechanical memories, stretchable electronics, and devising tunable surface adhesion for robotics. Recent advancements in the field of nanotechnology have provided robust techniques for controlled surface modification of polymers and creation of structural features on the polymeric surface at submicron scale. We have recently demonstrated techniques for controlled surfaces of soft and relatively hard polymers using ion beam irradiation and plasma treatment, which allows the fabrication of nanoscale surface features such as wrinkles, ripples, holes, and hairs with respect to its polymers. In this talk, we discuss the underlying mechanisms of formation of these structural features. This includes the change in the chemical composition of the surface layer of the polymers due to ion beam irradiation or plasma treatment and the instability and mechanics of the skin-substrate system. Using ion beam or plasma irradiation on polymers, we introduce a simple method for fabrication of one-dimensional, two-dimensional and nested hierarchical structural patterns on polymeric surfaces on various polymers such as polypropylene (PP), polyethylene (PE), poly (methyl methacrylate) PMMA, and polydimethylsiloxane (PDMS).

  • PDF

Development of Three-dimensional Scaffold for Cartilage Regeneration using Microstereolithography (마이크로 광 조형 기술을 이용한 연골조직 재생용 3 차원 인공지지체 개발)

  • Lee, Seung-Jae;Kang, Tae-Yun;Park, Jung- Kyu;Rhie, Jong-Won;Hahn, Sei-Kwang;Cho, Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1265-1270
    • /
    • 2007
  • Conventional methods for fabricating three-dimensional (3-D) scaffolds have substantial limitations. In this paper, we present 3-D scaffolds that can be made repeatedly with the same dimensions using a microstereolithography system. This system allows the fabrication of a pre-designed internal structure, such as pore size and porosity, by stacking photopolymerized materials. The scaffolds must be manufactured in a material that is biocompatible and biodegradable. In this regard, we synthesized liquid photocurable biodegradable TMC/TMP, followed by acrylation at terminal ends. And also, solidification properties of TMC/TMP polymer are to be obtained through experiments. Cell adhesion to scaffolds significantly affects tissue regeneration. As a typical example, we seeded chondrocytes on two types of 3-D scaffold and compared the adhesion results. Based on these results, the scaffold geometry is one of the most important factors in chondrocyte adhesion. These 3-D scaffolds could be key factors for studying cell behavior in complex environments and eventually lead to the optimum design of scaffolds for the regeneration of various tissues, such as cartilage and bone.

  • PDF

Generalized Two-dimensional (2D) Correlation Spectroscopy: Principle and Its Applications (일반화된 이차원 상관 분광학: 원리 및 응용)

  • Young Mee Jung;Seung Bin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.447-459
    • /
    • 2003
  • Generalized 2D correlation spectroscopy has been applied extensively to the analysis of spectral data sets obtained during the observation of a system under some external perturbation. It is used in various fields of spectroscopy including IR, Raman, UV, fluorescence, X-ray diffraction, and X-ray absorption spectroscopy (XAS) as well as chromatography. 2D hetero-spectral correlation analysis compares two completely different types of spectra obtained for a system under the same perturbation. Because of the wide range of applications of this technique, it has become one of the standard analytical techniques for the analytical chemistry, physical chemistry, biochemistry, and so on, and for studies of polymers, biomolecules, nanomaterials, etc. In this paper, we will introduce the principle of generalized 2D correlation spectroscopy and its applications that we have studied.