• Title/Summary/Keyword: two-dimensional loads

Search Result 253, Processing Time 0.027 seconds

Vibration analysis of the plates subject to dynamic concentrated loads by using spectral element method (스펙트럴요소법을 이용한 동적집중하중을 받는 평판의 진동해석)

  • Lee, Joon-Keun;Lee, U-sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.635-643
    • /
    • 1998
  • A spectral element method(SEM) is introduced for the vibration analysis of a rectangular plate subject to dynamic concentrated loads. First, the spectral plate element is derived from the relations between the forces and displacements along the two opposite edges of plate element. The global spectral matrix equation is then formulated by assembling two spectral plate elements so that the dynamic concentrated load is located at the connection nodal line between two plate elements. the concentrated load is then spatially Fourier transformed in the direction of the connection nodal line to transform the two-dimensional plate problem into a simplified equivalent one-dimensional beam-like problem. We may benefit from these procedures in that the spectral results from the present SEM is compared with the exact analytical solutions to prove the remarkable accuracy of the present SEM, while this is not true for conventional finite element solutions, especially at high frequency.

Numerical assessment of rectangular one- and two-way RC slabs strengthened with CFRP under impact loads

  • Mohamed Emara;Ahmed Hamoda;Jong Wan Hu
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, the flexural behaviors of one- and two-way reinforced concrete (RC) slabs strengthened with carbon-fiber-reinforced polymer (CFRP) strips under impact loads were investigated. The flexural strengthening of RC slabs under simulated static monotonic loads has been comprehensively studied. However, the flexural behavior of RC slabs strengthened with CFRP strips has not been investigated extensively, particularly those conducted numerically. Nonlinear three-dimensional finite element models were developed, executed, and verified against previous experimental results, producing satisfactory models with approximately 4% error. The models were extended to a parametric study, considering three geometric parameters: the slab rectangularity ratio, CFRP strip width, and CFRP strip configuration. Finally, the main results were used to derive a new formula for predicting the total deflection of RC slabs strengthened with CFRP strips under impact loads with an error of approximately 10%. The proposed equation reflected the slab rectangularity, CFRP strip width, equivalent slab stiffness, and dropped weight. Results indicated that the use of CFRP strips enhanced the overall impact performance, the wider the CFRP width, the better the enhancement. Moreover, the application of diagonally oriented CFRP strips diminished the cracking zone compared to straight strips. Additionally, the diagonal orientation of CFRP strips was more efficient for two-way slabs while the vertical orientation was found to be better in the case of one-way slabs.

STRESS ANALYSIS OF A HUMAN MANDIBLE UNDER VARIOUS LOADS USING FINITE ELEMENT METHOD (하악골의 부위별 충격시 발생되는 응력에 대한 유한 요소법적 연구)

  • Kim Sung-Rae;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.1
    • /
    • pp.7-22
    • /
    • 1992
  • The stress distributions on a human mandible for 18 load cases under two different boundary conditions (mouth open and closed), using the three dimensional finite element modeling were studied. Also, the expected fracture loads for each load cases were calculated by using the Von-Mises yield criterion. The model of a mandible with all teeth was composed of 2402 hexahedron elements and 3698 nodes. CAD techniques were used to analyze the 3-dimensional results. The conclusions of this study were as follows: 1. In the mouth open state, the maximum stress occured at the condyle neck; when the lateral load was exerted, the maximum stress occured at the load side condyle. 2. In the mouth closed state, when the loads were exerted on the mandibular body and chin, the maximum stress occured at the loaded area, and when the loads were exerted on the angle and ramus, the maximum stress occured at the condyle neck. 3. The expected fracture loads in each load case were calculated using the Von-Mises yield criterion, and it was confirmed that the mandible in the mouth open state was more easily fractured than that in the mouth closed state, and the expected fracture loads are lesser in the cases that load direction is parallel at mandibular plane than 45°. 4. The magnitudes of the expected fracture loads increased in the order of angle, ramus, body and chin in case of the mouth closed state, while chin, body, angle and ramus in case of the mouth open state. 5. The Von-Mises stress concentration regions analyzed by F.E.M. corresponded well with the results of clinical studies.

  • PDF

Effect of two-temperature in an orthotropic thermoelastic media with fractional order heat transfer

  • Lata, Parveen;Himanshi, Himanshi
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.241-262
    • /
    • 2021
  • In this article, we studied the effect of two-temperature in a two-dimensional orthotropic thermoelastic media with fractional order heat transfer in generalized thermoelasticity with three-phase-lags due to thermomechanical sources. The boundary of the surface is subjected to linearly distributed and concentrated loads (mechanical and thermal source). The solution of the problem is obtained with the help of Laplace and Fourier transform techniques. The expressions for displacement components, stress components and conductive temperature are derived in transformed domain. Numerical inversion technique is used to obtain the results in physical domain. The effect of two-temperature on all the physical quantities has been depicted with the help graphs. Some special cases are also discussed in the present investigation.

Large-scale quasi-steady modelling of a downburst outflow using a slot jet

  • Lin, W.E.;Savory, E.
    • Wind and Structures
    • /
    • v.9 no.6
    • /
    • pp.419-440
    • /
    • 2006
  • This article synthesizes the literature on the meteorology, experimental simulation, and wind engineering ramifications of intense downburst outflows. A novel design of a large-scale test facility and experimental evidence of its validity are presented. A two-dimensional slot jet is used to simulate only the outflow region of a downburst. Profiles of mean velocity and turbulence quantities are acquired using hot-wire anemometry. Comparison with the literature provides empirical evidence that supports the current approach. A geometric analysis considers the validity of applying a two-dimensional approximation for downburst wind loading of structures. This analysis is applicable to power transmission lines in particular. The slot jet concept can be implemented in a large boundary layer wind tunnel to enable large-scale laboratory experiments of thunderstorm wind loads on structures.

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Finite Element Analysis of Lumbar Spine under Surgical Condition (척추 수술시 요추의 유한요소해석)

  • Kim D. H.;Cho S. H.;Jang D. P.;Hwang W;Chung W. K;Oh S. H.;Kim Y. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.210-213
    • /
    • 2004
  • We study the fracture behavior of the lumbar No.4 and No.5 vertebra subjected to posteroanterior (PA) forces, a three dimensional finite element method (FEM). The lumbar spine was modeled 3-dimensionally using commercial software based on the principle of convert stacked two dimensional CT scan images into three dimensional shapes. Determination of the boundary conditions corresponding to actual surgical conditions was not easy, so that the simplified spine beam analyses were performed. The results were used in three dimensional finite element (FE) analysis. This FE analysis, indicates that the fracture loads of the lumbar No.4 and No.5 vertebra are respectively 1550 N and 1500 N. These fracture loads are for static loading, but in actual conditions the load on the lumbar spine varies dynamically. We found that the fracture load of lumbar No.4 vertebra is larger than that of lumbar No.5 vertebra, as a result of the total stress difference by the moment.

  • PDF

Effects of upstream two-dimensional hills on design wind loads: A computational approach

  • Bitsuamlak, G.;Stathopoulos, T.;Bedard, C.
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.37-58
    • /
    • 2006
  • The paper describes a study about effects of upstream hills on design wind loads using two mathematical approaches: Computational Fluid Dynamics (CFD) and Artificial Neural Network (NN for short). For this purpose CFD and NN tools have been developed using an object-oriented approach and C++ programming language. The CFD tool consists of solving the Reynolds time-averaged Navier-Stokes equations and $k-{\varepsilon}$ turbulence model using body-fitted nearly-orthogonal coordinate system. Subsequently, design wind load parameters such as speed-up ratio values have been generated for a wide spectrum of two-dimensional hill geometries that includes isolated and multiple steep and shallow hills. Ground roughness effect has also been considered. Such CFD solutions, however, normally require among other things ample computational time, background knowledge and high-capacity hardware. To assist the enduser, an easier, faster and more inexpensive NN model trained with the CFD-generated data is proposed in this paper. Prior to using the CFD data for training purposes, extensive validation work has been carried out by comparing with boundary layer wind tunnel (BLWT) data. The CFD trained NN (CFD-NN) has produced speed-up ratio values for cases such as multiple hills that are not covered by wind design standards such as the Commentaries of the National Building Code of Canada (1995). The CFD-NN results compare well with BLWT data available in literature and the proposed approach requires fewer resources compared to running BLWT experiments.

Time harmonic interactions due to inclined load in an orthotropic thermoelastic rotating media with fractional order heat transfer and two-temperature

  • Lata, Parveen;Himanshi, Himanshi
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.297-313
    • /
    • 2022
  • The objective of this paper is to study the effect of frequency in a two-dimensional orthotropic thermoelastic rotating solid with fractional order heat transfer in generalized thermoelasticity with two-temperature due to inclined load. As an application the bounding surface is subjected to uniformly and linearly distributed loads (mechanical and thermal source). The problem is solved with the help of Fourier transform. Assuming the disturbances to be harmonically time dependent, the expressions for displacement components, stress components, conductive temperature and temperature change are derived in frequency domain. Numerical inversion technique has been used to determine the results in physical domain. The results are depicted graphically to show the effect of frequency on various components. Some particular cases are also discussed in the present research.

Fracture Behavior of Concrete Anchorage Zone of Anchor System subjected to Shear Load (전단하중을 받는 앵커시스템 정착부 콘크리트의 파괴 거동)

  • 손지웅;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.265-270
    • /
    • 2002
  • In this paper, structural behaviors of anchor systems subjected to shear loads are analyzed by using fracture analysis and experiments. Two dimensional finite element analyses of concrete anchor systems to predict breakout failure of concrete through progressive fracture are carried out by utilizing the so-called embedded crack model. Three dimensional finite element analyses are also carried out to investigate the fracture behavior of anchor systems having different effective lengths, edge distances, spacings between anchors, and direction of loads. Results of analyses are compared with both experimental results and design values of ACI code on anchor, and then applicability of finite element method for predicting fracture behavior of concrete anchor systems is verified.

  • PDF