• Title/Summary/Keyword: two-dimensional detection

Search Result 347, Processing Time 0.024 seconds

Crop-row Detection by Color Line Sensor

  • Ha, S.ta;T.Kobaysahi;K.Sakai
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.353-362
    • /
    • 1993
  • The purpose of this study is to develop a crop-row detector which can be applied to an automatic row following control for cultivators or thinning machines. In this report, a possibility of new crop-row detecting method was discussed. This detecting method consists of two principal means. One is the hardware means to convert the two dimensional crop-row vision to the compacted one dimensional information. The conversion is achieved by a color line sensor and a rotating mirror. In order to extract crop-row , R and G signals of RGB color system are used. The locations of two different points on the target row are detected by this means. Another is the software means to estimate the offset value and the heading angle between the detector and the target row which can be assumed as a straight line. As a result of discussion, it was concluded that this detecting method would be accurate enough for practical use.

  • PDF

Changes according to the geometry of the shield using MCNP code system (MCNP코드 시스템을 이용한 차폐물 geometry에 따른 결과 변화에 대한 연구)

  • Kang, Ki-byung;Lee, Nam-ho;Hwang, Young-kwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1031-1033
    • /
    • 2013
  • Radiation protection, as well as finding the location of the radiation source, such as the Fukushima radiation leak accident, it is important for the early and safe disposal of nuclear accident. The three-dimensional position of the radiation source detection distance of the radiation source can provide additional information to the existing radiation detectors radiation of a two-dimensional position detection function and then it can play a decisive role in the radiation contaminant removal and decontamination work. In this research, three-dimensional semiconductor sensor based on dual radiation detectors radiation source device visible part of the research and development of efficient radiation sensor unit on the design of the shielding structure.The lightweight, high-efficiency radiation source locator implementation was attempted for the structure and thickness of the shielding and collimator to perform the simulation of the radiation shielding for the various parameters of the shape model through design the optimal structure of the MCNP-based heavy-duty tungsten shielding, lead shielding The results of this study, is a compact, lightweight three-dimensional radiation source detection and future of silicon - based sensors will be used in the study.

  • PDF

Real-Time Motion Tracking Detection System for a Spherical Pendulum Using a USB Camera (USB 카메라를 이용한 실시간 구면진자 운동추적 감지시스템)

  • Moon, Byung-Yoon;Hong, Sung-Rak;Ha, Manh-Tuan;Kang, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.807-813
    • /
    • 2016
  • Recently, a spherical pendulum attached to an end-effector of a robot manipulator has been frequently used for a test bed of residual vibration suppression control in a multi-dimensional motion. However, there was no automatic tracking system to detect the current bob position on-line, and there was inconvenience to not be able to store the bob position in real time and plot the trajectory. In this study, we developed a two-dimensional, real-time bob-detecting system using a digital USB camera, of which the key is hardware component design and software C programming for fast image processing and interfacing. The developed system was applied to residual vibration suppression control of a two-dimensional spherical pendulum that is attached at the end-effector of a two degree-of-freedom SCARA robot, and the effectiveness of the developed system has been demonstrated.

Cutting Plane Algorithm for the Selection of Non-Isolated Pixel Modulation Code (고립 픽셀 제거 변조부호 선택을 위한 절단평면 알고리즘)

  • Park, Taehyung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.465-470
    • /
    • 2013
  • In this paper, we introduce a modulation code design problem where best selection of two-dimensional codewords are determined to reduce two-dimensional (2D) Intersymbol Interference (ISI) and Interpage Interference (IPI), while when these codewords are randomly arranged on the storage, isolated pixel cannot be formed. Codeword selection problem and isolated pixel detection problem are formulated as integer program models and we develop a cutting plane algorithm where a valid cut is generated to remove current feasible solution to avoid isolated pixel by solving the isolated pixel detection subproblem. Using the proposed method, $4{\times}2$ 6/8 codewords with non-isolated pixel are found.

Coarse to Fine Optical Flow Detection (조세단계를 이용한 광류검출 알고리즘)

  • Lee Her Man;Seo Jeong Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.223-229
    • /
    • 2005
  • In this paper a coarse-to-fine optical flow detection method is proposed. Provided that optical flow gives reliable approximation to two-dimensional image motion, it can be used to recover the three-dimensional motion, but usually to set the reliable optical flows are difficult. The proposed algorithm uses Horn's algorithm for detecting initial optical flow, then Thin Plate Spline is introduced to warp a image frame of the initial optical flow to the next image frame. The optical flow for the warped image frame is again used iteratively until the mean square error between two image sequence frames is lowered. The proposed method is experimented for the real moving picture image sequence. The proposed algorithm gives dense optical flow vectors.

  • PDF

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.

Deep learning of sweep signal for damage detection on the surface of concrete

  • Gao Shanga;Jun Chen
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.

High-dimensional change point detection using MOSUM-based sparse projection (MOSUM 성근 프로젝션을 이용한 고차원 시계열의 변화점 추정)

  • Kim, Moonjung;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • This paper proposes the so-called MOSUM-based sparse projection method for change points detection in high-dimensional time series. Our method is inspired by Wang and Samworth (2018), however, our method improves their method in two ways. One is to find change points all at once, so it minimizes sequential error. The other is localized so that more robust to the mean changes offsetting each other. We also propose data-driven threshold selection using block wild bootstrap. A comprehensive simulation study shows that our method performs reasonably well in finite samples. We also illustrate our method to stock prices consisting of S&P 500 index, and found four change points in recent 6 years.

A Complex Region Analysis Algorithm of Two Dimensional Electrophoresis Images Using Accumulated Gradients (누적 기울기를 이용한 2차원 전기영동 영상의 복잡영역 분석 알고리즘)

  • Kim, Mi-Ae;Yoon, Young-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.41-47
    • /
    • 2009
  • A solution to the problems of recognizing as one spot or detection failures for complex regions, in which many spots representing proteins are overlapped and saturated, is suggested. The accumulated gradients of each point in complex regions are calculated, and the resulting accumulated gradient image segmented using watershed technique. The suggested solution show better and efficient result than existing method for spot separation, detects more protein spots hidden in the image of 2-dimensional electrophoresis, and expands the scope of prediction.

Quantitative Determination of Nicotine in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy

  • Jung, Jae-hyun;Choo, Jae-bum;Kim, Duck-Joong;Lee, Sang-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.277-280
    • /
    • 2006
  • Rapid and highly sensitive determination of nicotine in a PDMS microfluidic channel was investigated using surface enhanced Raman spectroscopy (SERS). A three-dimensional PDMS microfluidic channel was fabricated for this purpose. This channel shows a high mixing efficiency because the transverse and vertical dispersions of the fluid occur simultaneously through the upper and lower zig zag-type blocks. A higher efficiency of mixing could also be obtained by splitting each of the confluent streams into two sub-streams that then joined and recombined. The SERS signal was measured after nicotine molecules were effectively adsorbed onto silver nanoparticles by passing through the three-dimensional channel. A quantitative analysis of nicotine was performed based on the measured peak area at 1030 $cm^{-1}$. The detection limit was estimated to be below 0.1 ppm. In this work, the SERS detection, in combination with a PDMS microfluidic channel, has been applied to the quantitative analysis of nicotine in aqueous solution. Compared to the other conventional analytical methods, the detection sensitivity was enhanced up to several orders of magnitude.