• Title/Summary/Keyword: two-component hydrograph

Search Result 8, Processing Time 0.032 seconds

유성지역 소유역에서 추적자(Cl)를 이용한 강우사상에 따른 지표수로부터 기저유출의 분리

  • Jo Seong-Hyeon;Ha Gyu-Cheol;Go Dong-Chan;Jo Min-Jo;Song Mu-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.352-358
    • /
    • 2005
  • This study aims to separate hydrograph into baseflow and event water to calculate baseflow rate during a rainfall in small catchments, Yuseong, Daejeon, The hydrograph of stream during a period with no excess rainfall will decay. The discharge is composed entirely of groundwater contributions. During the period, the Cl concentration of the stream water can be regarded as being in equilibrium with that of the groundwater. Using Cl as a conservative tracer, two-component hydrograph separations were performed from end point of the period to next end point. The required data were obtained by monitoring of the surface water table, along with discharge rate of stream. Cl concentration of rainfall, surface water were measured and recorded. Hydrograph separation, a mixing model using chemical tracer is applied to chemical hydrograph separation technique. These results show that baseflow rates are 31.6% of rainfall in the catchments during study period.

  • PDF

Hydrograph Separation Using EMMA Model for the Coniferous Forest Catchment in Gwangneung Gyeonggido, Republic of Korea (I) - Determination of the End Members and Tracers -

  • Kim, Kyongha;Yoo, Jae-Yun;Jun, Jae-Hong;Choi, Hyung Tae;Jeong, Yong-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.556-561
    • /
    • 2006
  • This study was conducted to choose end-members and tracers for application of End Member Mixing Analysis (EMMA) model for the coniferous forest catchment, Gwangneung Gyeongi-do near Seoul metropolitan of South Korea (N $37^{\circ}$ 45', E $127^{\circ}$ 09'). This coniferous forest of Pinus Korainensis and Abies holophylla was planted at stocking rate of $3.0stems\;ha^{-1}$ in 1976. Thinning and pruning were carried out two times in the spring of 1996 and 2004 respectively. We monitored two successive rainfall events during ten days from June 26, 205 to July 5, 2005. Two storm events were selected to determine the end members and natural traces for hydrograph separation. The event 1 amounts to 161.9 m for two days from June 26 to 27, 2005. The event 2 precipitates to 139.2 mm for one day of July 1, 205. Throughfall, groundwater, soil water and stream water of the two events above were sampled through the bulk and automatic sampler. Their chemical properties were analyzed for prediction of the main tracer. The end members that contribute to the stream runoff were identified from the three components including groundwater, soil water and throughfall. Each component and stream water in the two events formed the suitable mixing diagram in case of chloride-nitrate ion and sulfate-potassium ion. Especially, chloride-nitrate ion was found to be the most suitable tracers for EMMA model in the two events.

Derivation of the Basin Instantaneous Unit Hydrograph Considering the Network Geometry and Hillslope of Small Basin (소유역의 수로기하학적특성과 사면을 고려한 유역순간단위도의 유도)

  • Kim, Jae Han;Yoon, Seok Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.161-171
    • /
    • 1993
  • The basin instantaneous unit hydrograph was derived by considering the network geometry and hillslope. The network geometry is quantified in a function, termed the width function, that reflects the distribution of runoff with flow distance from the outlet. The model using the derivation of the basin IUH consists of two components: the routing component of the initial distribution through the network by means of a simplified diffusion approximation and the hillslope component by means of a exponential distribution that is the probability density function of the travel time in the hillslope. The application of this method was tested on four observed flood data of Bocheong stream and Wi stream. The results show that the proposed method can be used for the analysis of the basin IUH.

  • PDF

Hydrograph Separation using Geochemical tracers by Three-Component Mixing Model for the Coniferous Forested Catchment in Gwangneung Gyeonggido, Republic of Korea

  • Kim, Kyongha;Yoo, Jae-Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.561-566
    • /
    • 2007
  • This study was conducted to clarify runoff production processes in forested catchment through hydrograph separation using three-component mixing model based on the End Member Mixing Analysis (EMMA) model. The study area is located in the coniferous-forested experimental catchment, Gwangneung Gyeonggido near Seoul, Korea (N 37 45', E 127 09'). This catchment is covered by Pinus Korainensis and Abies holophylla planted at stocking rate of 3,000 trees $ha^{-1}$ in 1976. Thinning and pruning were carried out two times in the spring of 1996 and 2004 respectively. We monitored 8 successive events during the periods from June 15 to September 15, 2005. Throughfall, soil water and groundwater were sampled by the bulk sampler. Stream water was sampled every 2-hour through ISCO automatic sampler for 48 hours. The geochemical tracers were determined in the result of principal components analysis. The concentrations of $SO_4{^{2-}$ and $Na^+$ for stream water almost were distributed within the bivariate plot of the end members; throughfall, soil water and groundwater. Average contributions of throughfall, soil water and groundwater on producing stream flow for 8 events were 17%, 25% and 58% respectively. The amount of antecedent precipitation (AAP) plays an important role in determining which end members prevail during the event. It was found that ground water contributed more to produce storm runoff in the event of a small AAP compared with the event of a large AAP. On the other hand, rain water showed opposite tendency to ground water. Rain water in storm runoff may be produced by saturation overland flow occurring in the areas where soil moisture content is near saturation. AAP controls the producing mechanism for storm runoff whether surface or subsurface flow prevails.

A Study on Long-Term Seepage Behaviour of Fill Dam by the Monitoring Data Analysis (계측자료 분석에 의한 필댐의 장기 침투거동 연구)

  • Chung, Kyujung;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.15-25
    • /
    • 2010
  • The main objective of this study was to offer informations about long-term seepage behavioral characteristics and to find a leakage safety management method for Juam Dam and Imha Dam, a central cored rockfill dams in Korea by the evaluating the automatically monitored leakage data. In the water leakage monitoring of fill dam, the generation of abnormal water leakage is difficult to directly detect due to the effect of outside factors such as the component of rainfall inherent in the observation value. Therefore, conventionally estimation methods of water leakage quantity were applied by multiple regression analysis considering reservoir water level, rainfall, etc.. However, the estimated error of rainfall component is relatively big in these method. This paper identifies the seepage characteristic of each dams which is not directly affected by rainfall through the hydrograph separation analysis and 3 dimensional analytical method, and thinks a leakage management method. It was noticed that two dams had site specific seepage behaviour features and were in stable state with the decreasing leakage quantity. It was also found that hydrograph separation method might be applicable to leakage safety management method.

Old Water Contributions to a Granitic Watershed, Dorim-cheon, Seoul

  • Kim, Hyerin;Cho, Sung-Hyun;Lee, Dongguen;Jung, Youn-Young;Kim, Young-Hee;Koh, Dong-Chan;Lee, Jeonghoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • It is reported that the intensity of rainfall will likely increase, on average, over the world on 2000. For water resources security, many studies for flow paths from rainfall or snowmelt to subsurface have been conducted. In Korea, few isotopic studies for characterizations of flow path have been undertaken. For a better understanding of how water derived from atmosphere moves to subsurface and from subsurface to stream, an analysis of precipitation and stream water using oxygen-18 and deuterium isotopes in a small watershed, Dorim-cheon, Seoul, was conducted with high resolution data. Variations of oxygen-18 in precipitation greater than 10‰ (δ18Omax = −1.21‰, δ18Omin = −11.23) were observed. Isotopic compositions of old water (groundwater) assumed as the stream water collected in advance were −8.98‰ and −61.85‰ for oxygen and hydrogen, respectively. Using a two-component mixing model, hydrograph separation of the stream water in Dorim-cheon was conducted based on weighted mean value of δ18O. As a result, except of instant dominance of rainfall, contribution of old water was dominant during the study period. On average, 71.3% of the old water and 28.7% of rainfall contributed to the stream water. The results show that even in the small watershed, which is covered with thin soil layer in granite mountain region, the stream water is considerably influenced by old water inflow rather than rainfall.

Runoff Analysis of Modified TOPMODEL with Subsurface Storm Flow Generation Mechanism (지표하 흐름을 고려한 개선된 TOPMODEL의 유출분석연구)

  • Lee, Hak-Su;Han, Ji-Yeong;Kim, Gyeong-Hyeon;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.403-411
    • /
    • 2001
  • This paper investigates the applicability of a modified version of TOPMODEL considering shallow subsurface storm flow in a forested mountaneous catchment. The macroporous soil structure provides a hydrological pathway for rapid runoff generation. A modified version of TOPMODEL introduces the two-storage system to analyze the hydrograph recession including rapid subsurface storm flow component. The two-month continuous hydrologic simulations of sulmachun watershed suggest that a modified version of TOPMODEL represents comprehensive and realistic flow generation mechanism comparing to those of an original version of TOPMODEL. The results of parameter calibration with Monte-Carlo method indicate a modified version of TOPMODEL produces a set of physically meaningful parameters.

  • PDF