• Title/Summary/Keyword: two temperature

Search Result 12,448, Processing Time 0.042 seconds

Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.501-522
    • /
    • 2019
  • The present study is concerned with the thermoelastic interactions in a two dimensional axisymmetric problem in transversely isotropic thermoelastic solid using new modified couple stress theory without energy dissipation and with two temperatures. The Laplace and Hankel transforms have been employed to find the general solution to the field equations. Concentrated normal force, normal force over the circular region, concentrated thermal source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. The effect of two temperature varying by taking different values for the two temperature on the components of normal stress, tangential stress, conductive temperature and couple stress are depicted graphically.

Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives

  • Lata, Parveen;Singh, Sukhveer
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.397-410
    • /
    • 2020
  • The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the solution to the problem in the transformed domain. The analytical expressions for displacement components, stress components and conductive temperature are obtained in the transformed domain. For obtaining the results in the physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal material sciences.

MULTIPLE SOLUTIONS IN NATURAL CONVECTION BETWEEN TWO HORIZONTAL PLATES WITH SMALL MAGNITUDE NON-UNIFORM TEMPERATURE IN THE UPPER PLATE (위 평판이 작은 불균일 온도를 갖는 두 수평 평판 사이의 자연 대류에서의 다중해)

  • Yoo, Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.64-70
    • /
    • 2016
  • Multiple solutions in natural convection of water with Pr=7 between two horizontal plates with small magnitude non-uniform temperature distribution in the upper plate is numerically investigated. The dimensionless temperature of upper plate is ${\theta}={\epsilon}sinkx$. Two upright cells are formed over one wave length in the conduction-dominated regime of small Rayleigh number. However, multicellular convection occurs above a critical Rayleigh number for small wave number. When k = 1.5, dual solutions are found and a transition of $6{\rightarrow}4$ eddy flow occurs with decrease of Rayleigh number. When k = 0.75, two, three, four and five multiple solutions are observed. Transitions of $14{\rightarrow}12$, $12{\rightarrow}10$, $10{\rightarrow}8$ and $6{\rightarrow}8$ eddy flow occur with decrease of Rayleigh number.

An Estimation of the Temperature Distribution and the Soot Density in Diesel Flame with the Two-Color Method using Image Analysis System (화상 2색법에 의한 디젤화염의 온도분포 및 매연농도의 평가)

  • 방중철;최익수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-69
    • /
    • 2003
  • The simplified two-color method is proposed which can estimate the temperature distribution and the soot density of the whole flame with the image analysis of the high-speed photographs. The factors influenced on its processing were examined, for example, the selection of the wave length, the kind of films, the preparation of the calibration curve between the radiance of flame and the luminance temperature. The simplified two-color method reported in this paper can be used as a tool for the improvement of the combustion process in direct injection diesel engine.

Effects of Two-Step Aging Treatment on the Mechanical Properties of 6061 Al Alloy (A 6061 합금의 기계적 특성에 미치는 2단시효의 영향)

  • Lee, Bo-Bae;Im, Hang-Joon;Jeong, Geol-Chae.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.57-60
    • /
    • 2019
  • The impact of two-step treatment on the mechanical properties of the 6061 Al alloy was investigated by testing the hardness and electrical conductance values. After two-step aging treatment, the hardness and electrical conductivity of the alloy was increased, and if the first aging treatment temperature was lower than the secondary aging treatment temperature, both the hardness and the electrical conductivity were not increased. The higher the temperature of the first aging treatment, the higher the hardness. The temperature of the first aging treatment is $175^{\circ}C$, $150^{\circ}C$, $120^{\circ}C$, and the second is $175^{\circ}C$ and $120^{\circ}C$.

A Study on Thermal Performance of Heat Pipe for Optimum Placement of Satellite Equipment

  • Park, Jong-Heung
    • ETRI Journal
    • /
    • v.19 no.2
    • /
    • pp.59-70
    • /
    • 1997
  • A study on the operation of a heat pipe with two heat sources has been performed to optimize the heat distribution of satellite equipment. A numerical modeling is used to predict the temperature profile for the heat pipe assuming cylindrical two-dimensional laminar flow for the vapor, and the conduction heat transfer for the wall and wick. An experimental study using the copper-water heat pipe with the length of 0.45 m has been performed to evaluate the numerical model and to compare the temperature distribution at the outer wall for the non-uniform heat distribution. The results on temperature profiles for the heat input range from 29 W to 47 W on each heater are presented. Also the correlation between the heat input and the temperature increase is presented for the optimum distribution on two heaters. The result shows that the outer wall temperature can be controlled by redistribution of heat sources. It is also concluded that the heat source closer to the condenser can carry more heat while maintaining lower temperatures at the outer wall.

  • PDF

Properties of Non-dispersive infrared Ethanol Gas Sensors according to the Irradiation Energy

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.168-172
    • /
    • 2017
  • A nondispersive infrared (NDIR) ethanol gas sensor was prototyped with ASIC implemented thermopile sensor, which included a temperature sensor and two ellipsoidal waveguide structures. The temperature dependency of the two ethanol sensors (with partially blocked and intact structures) has been characterized. The two ethanol gas sensors showed linear output voltages initially when varying the ambient temperature from 253 K to 333 K. The slope of the temperature sensor presented a constant value of 15 mV/K. After temperature compensation, the ethanol gas sensor estimated ethanol concentrations with larger errors of 20 to 25% below 200 ppm. However, the estimation errors were reduced to between -10 and +1 % from 253 K to 333 K above 200 ppm ethanol gas concentration in this research.

The Relationship between Soot Concentration and Operating Condition regarding Cavity Shapes in a D. I. Diesel Engine (직분식 디젤엔진에서 CAVITY 형상에 따른 Soot의 농도와 운전조건과의 관계 연구)

  • Lee, Sang-Suk;Lee, Tae-Won;Ha, Jong-Yu1
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.31-39
    • /
    • 1998
  • The local instantaneous flame temperature and soot concentration in a D. I. diesel engine were measured using a two-color method. The proposed method based on the continuous spectra! radiation from the soot particles in the flame is applicable to industrial Diesel engines without major modifications of their main characteristics because of simplicity and relative ease of application. Measurements were performed at two locations inside the combustion chamber of a D. I. diesel engine. Effects of different engine speeds and loads, fuel injection timings, combustion chamber shapes on flame temperature and KL factor, which is qualitatively proportional to soot concentrations, were examined. Flame temperature change were observed with increasing engine speed and load. The higher the flame temperature is, the lower the KL factor is.

  • PDF

Heat jet approach for finite temperature atomic simulations of two-dimensional square lattice

  • Liu, Baiyili;Tang, Shaoqiang
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.371-393
    • /
    • 2016
  • We propose a heat jet approach for a two-dimensional square lattice with nearest neighbouring harmonic interaction. First, we design a two-way matching boundary condition that linearly relates the displacement and velocity at atoms near the boundary, and a suitable input in terms of given incoming wave modes. Then a phonon representation for finite temperature lattice motion is adopted. The proposed approach is simple and compact. Numerical tests validate the effectiveness of the boundary condition in reflection suppression for outgoing waves. It maintains target temperature for the lattice, with expected kinetic energy distribution and heat flux. Moreover, its linear nature facilitates reliable finite temperature atomic simulations with a correct description for non-thermal motions.

Analysis of Temperature Distribution of Solid and Gas in the Rotary Cooler (회전냉각기에서 고체와 가스의 온도분포해석)

  • 이만승;최주석;전철근
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.25-30
    • /
    • 2002
  • Heat transfer occurring in the rotary cooler was analyzed by applying a one-dimensional steady state. The temperature of inlet gas and the measured temperature of outlet gas were used as boundary conditions. Axial temperature distribution of solid, gas and wall were calculated by solving two differential equations and two algebraic equations under the constraint of two point boundary conditions and operating conditions. The temperatures of outer wall calculated in this study were in good agreement with those measured from running rotary cooler.