• Title/Summary/Keyword: two link robot manipulator

Search Result 76, Processing Time 0.019 seconds

Robust Optimal Control of Robot Manipulators with a Weighting Matrix Determination Algorithm

  • Kim, Mi-Kyung;Kang, Hee-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.77-84
    • /
    • 2004
  • A robust optimal control design is proposed in this study for rigid robotic systems under the unknown loads and the other uncertainties. The uncertainties are reflected in the performance index, where the uncertainties are bounded for the quadratic square of the states with a positive definite weighting matrix. An iterative algorithm is presented for the determination of the weighting matrix required for necessary robustness. Computer simulations have been done for a weight-lifting operation of a two-link manipulator and the simulation results shows that the proposed algorithm is very effective for a robust control of robotic systems.

A Local Weight Learning Neural Network Architecture for Fast and Accurate Mapping (빠르고 정확한 변환을 위한 국부 가중치 학습 신경회로)

  • 이인숙;오세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.9
    • /
    • pp.739-746
    • /
    • 1991
  • This paper develops a modified multilayer perceptron architecture which speeds up learning as well as the net's mapping accuracy. In Phase I, a cluster partitioning algorithm like the Kohonen's self-organizing feature map or the leader clustering algorithm is used as the front end that determines the cluster to which the input data belongs. In Phase II, this cluster selects a subset of the hidden layer nodes that combines the input and outputs nodes into a subnet of the full scale backpropagation network. The proposed net has been applied to two mapping problems, one rather smooth and the other highly nonlinear. Namely, the inverse kinematic problem for a 3-link robot manipulator and the 5-bit parity mapping have been chosen as examples. The results demonstrate the proposed net's superior accuracy and convergence properties over the original backpropagation network or its existing improvement techniques.

  • PDF

Sampling-based Control of SAR System Mounted on A Simple Manipulator (간단한 기구부와 결합한 공간증강현실 시스템의 샘플 기반 제어 방법)

  • Lee, Ahyun;Lee, Joo-Ho;Lee, Joo-Haeng
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.356-367
    • /
    • 2014
  • A robotic sapatial augmented reality (RSAR) system, which combines robotic components with projector-based AR technique, is unique in its ability to expand the user interaction area by dynamically changing the position and orientation of a projector-camera unit (PCU). For a moving PCU mounted on a conventional robotic device, we can compute its extrinsic parameters using a robot kinematics method assuming a link and joint geometry is available. In a RSAR system based on user-created robot (UCR), however, it is difficult to calibrate or measure the geometric configuration, which limits to apply a conventional kinematics method. In this paper, we propose a data-driven kinematics control method for a UCR-based RSAR system. The proposed method utilized a pre-sampled data set of camera calibration acquired at sufficient instances of kinematics configurations in fixed joint domains. Then, the sampled set is compactly represented as a set of B-spline surfaces. The proposed method have merits in two folds. First, it does not require any kinematics model such as a link length or joint orientation. Secondly, the computation is simple since it just evaluates a several polynomials rather than relying on Jacobian computation. We describe the proposed method and demonstrates the results for an experimental RSAR system with a PCU on a simple pan-tilt arm.

A New Integral Variable Structure Regulation Controller for Robot Manipulators with Accurately Predetermined Output Performance (로봇 매니플레이터를 위한 정확한 사전 결정 출력 성능을 갖는 새로운 적분 가변구조 레귤레이션 제어기)

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.96-107
    • /
    • 2004
  • In this paper, a new integral variable structure regulation controller(IVSRC) is designed by using a special integral sliding surface and a disturbance observer for the improved regulation control of highly nonlinear robot manipulators with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to origin without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in oder to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail through the two theorems together with the closed loop stability. The design of the proposed IVSRC is separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has been demonstrated through simulation studies on the regulation control of a two link manipulator under parameter uncertainties and payload variations, in view of no reaching phase, no overshoot, predetermined response with prescribed accuracy, easy change of output performance, separation of design phase, and so on.

  • PDF

Variable structure control with fuzzy reaching law method for nonlinear systems (비선형 시스템에 대한 퍼지 도달 법칙을 가지는 가변 구조 제어)

  • Sa-Gong, Seong-Dae;Lee, Yeon-Jeong;Choe, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.279-286
    • /
    • 1996
  • In this paper, variable structure control(VSC) based on reaching law method with fuzzy inference for nonlinear systems is proposed. The reaching law means the reaching condition which forces an initial state of system to reach switching surface in finite time, and specifies the dynamics of a desired switching function. Since the conventional reaching law has fixed coefficients, the chattering can be existed largely in sliding mode. In the design of a proposed fuzzy reaching law, we fuzzify RP(representative point)'s orthogonal distance to switching surface and RP's distance the origin of the 2-dimensional space whose coordinates are the error and the error rate. The coefficients of the reaching law are varied appropriately by the fuzzy inference. Hence the state of system in reaching mode reaches fastly switching surface by the large values of reaching coefficients and the chattering is reduced in sliding mode by the small values of those. And the effectiveness of the proposed fuzzy reaching law method is showen by the simulation results of the control of a two link robot manipulator.

  • PDF

Adaptive Learning Control fo rUnknown Monlinear Systems by Combining Neuro Control and Iterative Learning Control (뉴로제어 및 반복학습제어 기법을 결합한 미지 비선형시스템의 적응학습제어)

  • 최진영;박현주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.9-15
    • /
    • 1998
  • This paper presents an adaptive learning control method for unknown nonlinear systems by combining neuro control and iterative learning control techniques. In the present control system, an iterative learning controller (ILC) is used for a process of short term memory involved in a temporary adaptive and learning manipulation and a short term storage of a specific temporary action. The learning gain of the iterative learning law is estimated by using a neural network for an unknown system except relative degrees. The control informations obtained by ILC are transferred to a long term memory-based feedforward neuro controller (FNC) and accumulated in it in addition to the previously stored infonnations. This scheme is applied to a two link robot manipulator through simulations.

  • PDF