• Title/Summary/Keyword: two link robot manipulator

Search Result 76, Processing Time 0.026 seconds

A Study on the Position Control of the parallelogram link DD Robot Using Neural Network (신경회로망을 이용한 평행링크 DD로봇의 위치제어)

  • 김성대
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.64-71
    • /
    • 1999
  • In this paper, two degree of freedom parallelogram link mechanism is used as DD(Direct-drive) robot mechanism. In parallelogram link mechanism, two motors being established in each base frame, the mass of motor itself is not loaded to anther motor; the number of links are increased, the mass of arm being lighter; with the estabilishment of link parameter, nonlinearity such as the centrifugal force disappears; at the same time anti-interference between motors can be realized. And to realize highy-accurate drive of parallelogram link DD robot manipulator, to improve the learning speed through the design of leaning control system using neural network, to raise adapting power to the varied work objects; the learning control algorithm is composed of neural network and feedback controller in this paper.

  • PDF

Vibration Control of a Very Flexible Robot Arm-via Piezoactuators (압전 작동기를 이용한 매우 유연한 로봇 팔의 진동 제어)

  • 신호철;최승복
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.187-196
    • /
    • 1996
  • A new control strategy to actively control the vibration of a very flexible single link manipulator is proposed and experimentally realized. The control scheme consists of two actuators; a motor mounted at the beam hub and a piezoceramic bonded to the surface of the flexible link. The control torque of the motor to produce a desired angular motion is firstly determined by employing a sliding mode control theory on the equivalent rigid dynamics. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, underirable oscillation is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, the desired tip position is favorably accomplished without vibration. Measured control responses are presented in order to demonstrate the efficiency of the proposed control methodology.

  • PDF

A Cartesian Space Adaptive Control Scheme for Robot Manipulators (로봇 매니퓰레이터의 직교공간 적응제어 방식)

  • Hwang, Seok-Yong;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

Sliding Mode Control of Robot Manipulators with Improvement of Convergence Rate (수렴속도 향상을 갖는 로보트 매니퓰레이터의 슬라이딩모드 제어)

  • 박세승;박종국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.3
    • /
    • pp.316-325
    • /
    • 1991
  • This paper presents the design of a new sliding mode controller to improve the rate of convergence by Lyapunov's stability analysis. The proposed controller shows that the elimination of the steady state position errors can be achieved by replacing the desired trajectory by the virtual reference trajectory. The proposed control scheme which consists of the upper bounded and estimated values of eac term of the manipulator dynamic equation does not require good knowledge of the parameters and the computation of matrix inversion. The performance of proposed controller is evaluated by the simulation for a two-link manipulator.

  • PDF

A Study on the tracking control of a robot manipulator using variable structure systems (I) (가변구조 이론에 의한 로보트 팔의 추종제어에 관한 연구 (I))

  • Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.1
    • /
    • pp.41-52
    • /
    • 1985
  • This study is a step in developing the sliding mode control methodology for the robust control of a class of nonlinear time-varying systems. The methodology uses in its idealized form piecewise continuous feedback control, resulting in the state trajectory "sliding" slong a time-varying sliding surface in the state space. This idealized control law achieves perfect tracking. The method is applied to the control of a two-link manipulator handling variable loads in a flexible manufacturing system environment with noise. The result through simulation is that the tracking problem of articular robot with high precision can be realized by using the variable structure system (VSS) theory. The motions of articular robot were insensitive to various payloads. payloads.

  • PDF

Image-based Robust Control of Robot Manipulators with Image Jacobian and Dynamics Uncertainties (영상 자코비안 및 동특성 불확실성을 포함하는 로봇 매니퓰레이터의 영상기반 강인제어)

  • Kim, Chin-Su;Mo, Eun-Jong;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1047-1052
    • /
    • 2008
  • In this paper, we design an image-based robust controller to compensate uncertainties with image Jacobian and robot dynamics due to uncertain depth measurement and load variations. The proposed controller with eye-in-hand structure has separate terms to compensate each of uncertainties. The ultimate boundedness of the closed-loop system is proved by the Lyapunov approach. The performance of the proposed control system is demonstrated by simulation and experimental results a 5-link robot manipulator with two degree of freedom.

A Compliance Control Method for Robot Manipulators Using Nonlinear Stiffness Adaptation (비선형 강성 조절 방법을 이용한 로봇 매니퓰레이터의 컴플라이언스 제어 방법)

  • Kim, Byoyng-Ho;Oh, Sang-Rok;Suh, Il-Hong;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.703-709
    • /
    • 2000
  • This paper proposes a compliance control strategy for the robot manipulators accidentally interact-ing with an unknown environment. In this proposed method each in the diagonal stiffness matrix corre-sponding to the task coordinate in a Cartesian space is adaptively adjusted during contact along the corresponding axis based on the contact force with its environment. This method can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results show the effectiveness of the proposed method by employing a two link direct drive manipulator interacting with an unknown environment.

  • PDF

A Compliance Control Strategy for Robot Manipulators Under Unknown Environment

  • Kim, Byoung-Ho;Oh, Sang-Rok;Suh, Il-Hong;Yi, Byung-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1081-1088
    • /
    • 2000
  • In this paper, a compliance control strategy for robot manipulators that employs a self-adjusting stiffiness function is proposed. Based on the contact force, each entry of the diagonal stiffness matrix corresponding to a task coordinate in the operational space is adaptively adjusted during contact along the corresponding axis. The proposed method can be used for both the unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results involving a two-link direct drive manipulator interacting with an unknown environment demonstrates the effectiveness of the proposed method.

  • PDF

Design of Fuzzy Logic Controller for Robot Manipulators in the VSS Control Scheme

  • Yi, Soo-Yeong;Chung, Myung-Jin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1207-1210
    • /
    • 1993
  • There is an opinion of regarding a simple fuzzy logic controller as a kind of Variable Structure Controller in recent years. The opinion may provide an analytical basis which describes the robustness to uncertainty and the stability of a fuzzy logic controller. So in this paper, a fuzzy logic controller based on the Variable Structure System with is designed for a robot manipulator which is a class of complex, nonlinear system with uncertainty. Fuzzy control rules, membership shape of the I/O variables of the fuzzy logic controller are designed for guaranteeing the stability of an overall control system. From a computer simulation of dynamic control of a two link robot manipulator, the design procedure of the fuzzy logic controller is validated.

  • PDF

Adaptive Fuzzy Control with Reduced Complexity for Robot Manipulators (구조적 복잡성을 감소시킨 로봇 머니퓰레이터 적응 퍼지 제어)

  • Jang, Jin-Su;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1775-1776
    • /
    • 2008
  • This paper presents a adaptive fuzzy control suitable for motion control of multi-link robot manipulators with uncertainties. When joint velocities are available, full state adaptive fuzzy feedback control is designed to ensure the stability of the closed loop dynamic. If the joint velocities are not measurable, an observer is introduced and an adaptive output feedback control is designed based on the estimated velocities. To reduce the number of fuzzy rules of the fuzzy controller, we consider the properties of robot dynamics and the decomposition of the unknown input gain matrix. The proposed controller is robust against uncertainties and external disturbances. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.

  • PDF