• 제목/요약/키워드: two faults

검색결과 504건 처리시간 0.023초

Comparison of the Operational Speed of Hard-wired and IEC 61850 Standard-based Implementations of a Reverse Blocking Protection Scheme

  • Mnguni, Mkhululi Elvis Siyanda;Tzoneva, Raynitchka
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.740-754
    • /
    • 2015
  • This paper focuses on the reverse blocking busbar protection scheme with aim to improve the speed of its operation and at the same time to increase operational reliability, flexibility and stability of the protection during external and internal faults by implementation of the extended functionality provided by the IEC61850 standard-based protective Intelligent Electronic Devices (IEDs). The practical implementation of the scheme by the use of IEC 61850 standard communication protocol is investigated. The proposed scheme is designed for a radial type of a distribution network and is modeled and simulated in the DigSILENT software environment for various faults on the busbar and its outgoing feeders. A laboratory test bench is built using three ABB IEDs 670 series that are compliant with the IEC 61850 standard, CMC 356 Omicron test injection device, PC, MOXA switch, and a DC power supplier. Two types of the reverse blocking signals between the IEDs in the test bench are considered: hard wired and Ethernet communication by using IEC 61850 standard GOOSE messages. Comparative experimental study of the operational trip response speeds of the two implementations for various traffic conditions of the communication network shows that the performance of the protection scheme for the case of Ethernet IEC 61850 standard-based communication is better.

산업용 터보기기 결함 진단을 위한 복합적 데이터베이스 구조의 퍼지 전문가 시스템 (A Fuzzy Expert System Based on Hybrid Database for Fault Diagnosis of Industrial Turbomachinery)

  • 백두진;김승종;김창호;장건희;이용복
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.703-712
    • /
    • 2003
  • This paper suggests a fuzzy expert system for fault diagnosis of rotating machinery, based on modulated databases. In the proposed system, alarm and trip levels are set based on ISO, considering operating condition, machinery type and maintenance history. Input signals for diagnosis, such as sub-and super-harmonic components of vibration and mean value, are normalized from 0 to 1 under the threshold level and otherwise equal to one so that chronic faults slightly below the threshold level can be monitored. The database for diagnosis consists of two modules: the well-known Sohre's chart module and if-then type rules. The Sohre's chart is utilized for the most common problems of high-speed turbomachinery, while the rule-based module, which was collected from many papers and reports, is for diagnosing peculiar faults according to the type of machinery. To infer the results from two modules, a fuzzy operation of Yager sum was adopted. Using a simulator constructed in laboratory, experimental verification was performed for the cases of unbalance and resonance which were intended. The experimental results show that the proposed fuzzy expert system has feasibility in practical diagnosis of rotating machinery.

모듈 구조 데이터베이스 기반의 터보기기 결함 진단용 하이브리드 퍼지 전문가 시스템 (A Hybrid Fuzzy Expert System Based on Module-type Database for Fault Diagnosis of Turbomachinery)

  • 백두진;김승종;김창호;곽현덕;장건희;이용복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.303-312
    • /
    • 2003
  • This paper suggests a fuzzy expert system for fault diagnosis of rotating machinery, based on modulated databases. In the proposed system, alarm and trip levels are set based on ISO, considering operating condition, machinery type and maintenance history. Input signals for diagnosis, such as sub- and super-harmonic components of vibration and mean value, are normalized from 0 to 1 under the threshold level and otherwise equal to one so that chronic faults slightly below the threshold level can be monitored. The database for diagnosis consists of two modules: the well-known Sohre's chart module and if-then type rules. The Sohre's chart is utilized for the most common problems of high-speed turbomachinery, while the rule-based module, which was collected from many papers and reports, is for diagnosing peculiar faults according to the type of machinery. To infer the results from two modules, a fuzzy operation of Yager sum was adopted. Using a simulator constructed in laboratory, experimental verification was performed for the cases of resonance and housing looseness which were intended. The experimental results show that the proposed fuzzy expert system has feasibility in practical diagnosis of rotating machinery.

  • PDF

Seismic hazard assessment for two cities in Eastern Iran

  • Farzampour, Alireza;Kamali-Asl, Arash
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.681-697
    • /
    • 2015
  • Iran as one of the countries located on the Alpine-Himalayan seismic belt has recently experienced a few number of catastrophic earthquakes. A well-known index of how buildings are affected by earthquakes is through assessment of probable Peak Ground Acceleration (PGA) and structures' response spectra. In this research, active faults around Kerman and Birjand, two major cities in eastern parts of Iran, have been considered. Seismic catalogues are gathered to categorize effects of surrounding faults on seismicity of the region. These catalogues were further refined with respect to time and space based on Knopoff-Gardner algorithm in order to increase statistical independency of events. Probabilistic Seismic Hazard Analysis (PSHA) has been estimated for each of cities regarding 50, 100, 200 and 500 years of structures' effective life-span. These results subsequently have been compared with Deterministic Seismic Hazard Analysis (DSHA). It has been observed that DSHA not necessarily suggests upper bound of PSHA results. Furthermore, based on spectral Ground Motion Prediction Equations (GMPEs), Uniform Hazard Spectra (UHS) and spectral acceleration were provided for 2% and 10% levels of probability of exceedance. The results show that increasing source-to-site distance leads to spectral acceleration reduction regarding each fault. In addition, the spectral acceleration rate of variation would increase if the source-to-site distance decreases.

진동 신호의 2차원 변환을 통한 유도 전동기 다중 결함 진단 (Multiple Faults Diagnosis in Induction Motors Using Two-Dimension Representation of Vibration Signals)

  • 정인규;강명수;장원철;김종면
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.338-345
    • /
    • 2013
  • Induction motors play an increasing importance in industrial manufacturing. Therefore, the state monitoring systems also have been considering as the key in dealing with their negative effect by absorbing faulty symptoms in motors. There are numerous proposed systems in literature, in which, several kinds of signals are utilized as the input. To solve the multiple faults problem of induction motors, like the proposed system, the vibration signals is good candidate. In this study, a new signal processing scheme was utilized, which transforms the time domain vibration signal into the spatial domain as an image. Then the spatial features of converted image then have been extracted by applying the dominant neighbourhood structure (DNS) algorithm. In addition, these feature vectors were evaluated to obtain the fruitful dimensions, which support to discriminate between states of motors. Because of reliability, the conventional one-against-all (OAA) multi-class support vector machines (MCSVM) have been utilized in the proposed system as classifier module. Even though examined in severity levels of signal-to-noise ratio (SNR), up to 15dB, the proposed system still reliable in term of two criteria: true positive (TF) and false positive (FP). Furthermore, it also offers better performance than five state-of-the-art systems.

  • PDF

카오스 어트랙터를 이용한 전력계통의 고저항 지락사고 패턴분류 (Recognition of High Impedance Fault Patterns based on Chaotic Features)

  • 신승연;공성곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2272-2274
    • /
    • 1998
  • This paper presents recognition and classification of high impedance fault(HIF) patterns in the electrical power systems based on chaotic features. Chaotic features are obtained from two dimensional chaos attractors reconstructed from fault current waveform. The RBFN is trained with the two types of HIF data generated by the electromagnetic transient program and measured from actual faults. The RBFN successfully classifies normal and the three types of fault patterns based on the binary chaotic features.

  • PDF

Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines

  • Shen, Changqing;Wang, Dong;Liu, Yongbin;Kong, Fanrang;Tse, Peter W.
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.453-471
    • /
    • 2014
  • The fault diagnosis of rolling element bearings has drawn considerable research attention in recent years because these fundamental elements frequently suffer failures that could result in unexpected machine breakdowns. Artificial intelligence algorithms such as artificial neural networks (ANNs) and support vector machines (SVMs) have been widely investigated to identify various faults. However, as the useful life of a bearing deteriorates, identifying early bearing faults and evaluating their sizes of development are necessary for timely maintenance actions to prevent accidents. This study proposes a new two-layer structure consisting of support vector regression machines (SVRMs) to recognize bearing fault patterns and track the fault sizes. The statistical parameters used to track the fault evolutions are first extracted to condense original vibration signals into a few compact features. The extracted features are then used to train the proposed two-layer SVRMs structure. Once these parameters of the proposed two-layer SVRMs structure are determined, the features extracted from other vibration signals can be used to predict the unknown bearing health conditions. The effectiveness of the proposed method is validated by experimental datasets collected from a test rig. The results demonstrate that the proposed method is highly accurate in differentiating between fault patterns and determining their fault severities. Further, comparisons are performed to show that the proposed method is better than some existing methods.

제천(提川) 서남부(西南部) 옥천대(沃川帶) 지역(地域)에 대(對)한 중력탐사연구(重力探査硏究) (Gravity Survey on the Southwestern Area of Jechǒn in the Okchǒn Zone)

  • 민경덕;박혜심
    • 자원환경지질
    • /
    • 제22권2호
    • /
    • pp.91-102
    • /
    • 1989
  • The gravity measurement has been conducted at 61 stations with an interval of about 500 to 1,000 m along two survey lines of about 47 Km between $Chungju-Jech{\check{o}}n$ and $Salmi-D{\check{o}}cksanmy{\check{o}}n$ in order to study on the subsurface geologic structure and structural relation between $Okch{\check{o}}n$ Group and Great Limestone Group of $Chos{\check{o}}n$ Supergroup. The Bouger gravity anomalies were obtained from the reduction of the field observations, and the distribution patterns of the basement and subsurface geologic structure were interpreted by means of the Fourier-Series and Talwani method for two-dimensional body. The depth of Conrad discontinuity varies from 12.7 Km to 15.7 Km, and vertical displacements along the Osanri and Bonghwajae faults are 1.0 Km and 1.5 Km, respectively between Chungju and $Jech{\check{o}}n$. The depth of Conrad discontinuity varies from 13.8 Km to 15.4 Km, and vertical displacement along the Bonghwajae fault is 0.5 Km between Salmi and $D{\check{o}}cksanmyon$. The basement is widely exposed at several places between Chungju and $Jech{\check{o}}n$. In the unexposed area between Osanri and $W{\check{o}}lgulri$, its depth is from 1.5 Km to 2.1 Km. It is displaced downward along the Osanri and Bonghwajae faults by 0.8 Km and 0.6 Km, respectively, and is displaced upward along the Dangdusan fault by 1.6 Km. On the other hand, the depth of the basement varies abruptly by the Sindangri, Jungwon, Kounri, and Bonghwajae faults between Salmi and $D{\check{o}}cksanmy{\check{o}}n$, and it is from 2.8 Km to 3.2 Km around $Salmimy{\check{o}}n$, from 1.6 Km to 2.5 Km between the Sindangri and Bonghwajae faults, 3.0 Km near Koburangjae, and 2.5 Km at $Doj{\check{o}}nri$. The high Bouguer gravity anomalies are due to the accumulation of $Okch{\check{o}}n$ Group and $Jangs{\check{o}}nri$ Metamorphic Complex whose density is higher than the basement exposed between Sondong and Osanri, and imply the existance of Bonghwajae Metabasite or hornblende gabbro of high density distributed along the Bonghwajae fault in the vicinity of Koburangjae. The low Bouguer gravity anomalies resulted form the fracture zone associated with fault or rock of low density imply the existance of the Osanri, Bonghwajae, Dangdusan faults and $Daed{\check{o}}cksan$ thrust between Chungju and $Jech{\check{o}}n$, the uplift of the basement by the Sindangri, Jungwon, Kounri, and Bonghwajae faults, and extensive distribution of Cretaceous biotite granites between Salmi and $Docksanmy{\check{o}}n$. The thickness of $Okch{\check{o}}n$ metasediments varies from 1.5 Km to 3.2 Km, and that of Great Limestone Group of $Chos{\check{o}}n$ Supergroup from 200 m to 700 m. It is interpreted that $Okch{\check{o}}n$ Group is in contact with Great Limestone Group of $Chos{\check{o}}n$ Supergroup by the fault zones of the Bonghwajae and $Daed{\check{o}}cksan$ faults, and the Bongwhajae fault is a thrust of high angle, by which the east of the basement is displaced downward 0.5 Km between Chungju and lechon, and 1.0 Km between Salmi and $D{\check{o}}cksanmy{\check{o}}n$.

  • PDF

전달오차의 EEMD적용을 통한 기어 결함분류연구 (A Study on Fault Classification by EEMD Application of Gear Transmission Error)

  • 박성호;최주호
    • 한국전산구조공학회논문집
    • /
    • 제30권2호
    • /
    • pp.169-177
    • /
    • 2017
  • 본 논문에서는 기어 전달오차의 EEMD 적용을 통한 기어 이빨의 박리결함과 균열결함의 분류법을 소개한다. 두 가지 결함을 적용한 기어의 유한요소모델을 바탕으로 전달오차를 획득하고 전달오차에서 나타나는 두 가지 결함의 특징과 정상상태의 전달오차와의 차이를 나타내는 RTE에서 나타나는 두 가지 결함의 특징을 확인했으며 유한요소해석 결과를 이용한 시뮬레이션 신호를 구성하여 신호처리를 통한 RTE 획득과정을 구성하였다. 시뮬레이션 신호로부터 얻은 RTE의 EEMD 적용을 통하여 박리과 균열의 신호가 각기 다른 IMF에서 비중이 크다는 것을 확인하였고, 이를 실험을 통해 검증하고자 하였다. 한 쌍의 기어와 서보모터, 파우더브레이크 그리고 기어의 회전량을 측정하기 위한 엔코더로 구성되어있는 테스트베드를 꾸려 전달오차를 획득하였다. 두 개의 기어를 이용하여 정상, 박리, 균열 세가지 상황에 대한 전달오차를 획득하여 시뮬레이션과 같은 과정을 거쳐 결함이 신호로 구분되는 것을 확인했다. 이를 정량화 하기위해 파고율을 각 IMF에 적용하였고 첫 번째 IMF와 세 번째 IMF의 파고율을 특징 신호로 선정하였다. 실험을 통해 확보된 데이터를 이용하여 Bayes decision 이론을 이용하여 분류 방법을 제시하였다.

패러티 공간을 이용한 2개 GPS 파라미터 고장진단 (Two-Failure Gps Raim by Parity Space Approach)

  • 유창선;안이기;이상정
    • 한국항공우주학회지
    • /
    • 제31권6호
    • /
    • pp.52-60
    • /
    • 2003
  • GPS(Global Positioning System)를 이용한 항공항법은 이용성과 무결성의 만족을 절대적으로 요구하고 있다. GPS의 무결성에 대한 연구로서 GPS수신기 내부 자체에서 무결성을 모니터링하는 다양한 RAIM(Receiver Autonomous Integrity Monitoring)기법이 연구되어 왔으며 이들 중에서 패러티 공간을 이용한 고장진단기법은 패러티 백터의 크기와 방향성을 이용할 수 있는 편리성을 갖고 있어 비교적 많은 연구가 진행되어 왔다. 한편, 지금까지의 RAIM 기법들은 대부분 단일고장을 가정하며, 실제 적용시 발생할 수 있는 다중고장의 경우 오차요인들의 상호간섭으로 정확한 식별이 어렵다는 단점을 갖고 있다. 본 논문에서는 확장된 패러티 공간에서 고장진단을 다룸으로써 2개의 고장식별에의 적용이 가능함을 보였다.