• Title/Summary/Keyword: two faults

Search Result 504, Processing Time 0.024 seconds

An Effective Test and Diagnosis Algorithm for Dual-Port Memories

  • Park, Young-Kyu;Yang, Myung-Hoon;Kim, Yong-Joon;Lee, Dae-Yeal;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.555-564
    • /
    • 2008
  • This paper proposes a test algorithm that can detect and diagnose all the faults occurring in dual-port memories that can be accessed simultaneously through two ports. In this paper, we develop a new diagnosis algorithm that classifies faults in detail when they are detected while the test process is being developed. The algorithm is particularly efficient because it uses information that can be obtained by test results as well as results using an additional diagnosis pattern. The algorithm can also diagnose various fault models for dual-port memories.

  • PDF

A fault detection and recovery mechanism for the fault-tolerance of a Mini-MAP system (Mini-MAP 시스템의 결함 허용성을 위한 결함 감지 및 복구 기법)

  • Mun, Hong-Ju;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.264-272
    • /
    • 1998
  • This paper proposes a fault detection and recovery mechanism for a fault-tolerant Mini-MAP system, and provides detailed techniques for its implementation. This paper considers the fault-tolerant Mini-MAP system which has dual layer structure from the LLC sublayer down to the physical layer to cope with the faults of those layers. For a good fault detection, a redundant and hierarchical fault supervision architecture is proposed and its implementation technique for a stable detection operation is provided. Information for the fault location is provided from data reported with a fault detection and obtained by an additional network diagnosis. The faults are recovered by the stand-by sparing method applied for a dual network composed of two equivalent networks. A network switch mechanism is proposed to achieve a reliable and stable network function. A fault-tolerant Mini-MAP system is implemented by applying the proposed fault detection and recovery mechanism.

  • PDF

MTA(Memory TestAble) Code for Testing in Semiconductor Memories (반도체 메모리의 테스트를 위한 MTA(Memory TestAble code)코드)

  • 이중호;조상복
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.111-121
    • /
    • 1994
  • This paper proposes a memory testable code called MTA(Memory TestAble) code which is based on error correcting code technique for testing functional faults in semiconductor memories. The characteristics of this code are analyzed and compared with those of conventional codes. The developed decoding technique for this code can reduce the decoder circuits up to 70% and obtain two-times faster decoding speed than other codes such as hamming code or Hsiao code. The MTA code is eccectively applicable to parallel testing of semiconductor memories because it has the same information length and parity length. It can detect from single error functional faults to triple error in semiconductor memories.

  • PDF

Back Fed Earth Fault Detection in Three Wire-Unigrounded Distribution-System By Zero Sequence Admittance (영상어드미턴스에 의한 직접접지 배전방식에서의 역가압 지락사고 검출)

  • Yoo, Myeong-Ho;Kim, Il-Dong;Han, Hong-Seok;Pak, Chul-Won
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.120-123
    • /
    • 1993
  • This paper presents the developing a new algorithm for detecting the Back fed Earth Fault in three wire-unigrounded distribution system by zero sequence admittance. So called "Backfed Earth Fault" of the electric power distribution line refers to a class of earth faults that the load-side line only is grounded, following after the distribution line broken into two parts, the source-side and the load-side. Because its mechanism differs from that of other earth faults, it is therefore, required to examine. This paper deals with the detailed software of the digital protective relay for Backfed earth fault. In order to prove that the proposed schemes is good, we performed off-line simulation using data from EMTP and ETSA(Electrcity Trust Of South Austrilia). It is shown that the suggested algorithm is never mal operated.

  • PDF

A Method for Indentifying Broken Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor Using Radial Flux Sensor

  • Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, a method for detecting broken rotor bar and stator winding fault in a low voltage squirrel-case induction motor using an air-gap flux variation analysis is proposed to develop a simple and low cost diagnosis technique. To measure the leakage flux in radial direction, a radial flux sensor is designed as a search coil and installed between stator slots. The proposed method is able to identify two kinds of motor faults by calculating load condition of motors and monitoring abnormal signals those are related with motor faults. Experimental results obtained on 7.5kW three-phase squirrel-cage induction motors are discussed to verify the performance of the proposed method.

Digital Negative Sequence Relay Algorithm for Detection of Unbalanced State in a Generator (발전기의 불평형 검출을 위한 디지털 역상 계전 알고리즘)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.198-203
    • /
    • 2013
  • There are conditions that can be unbalanced three phase currents in a large generator by untransposed lines, unbalanced loads, unsymmetrical faults, and open phases. The unbalanced conditions can producing negative sequence components of current that induce two times frequence current in the surface of the rotor, the retaining rings, the slot wedges in the field windings. These rotor currents make the rotor rapidly overheat, so the rotor can cause substantial damage in a very short time. This paper presents the digital negative sequence relay algorithm for unbalanced protection in a generator. The proposed algorithm was tested by using collected current signals on PSCAD/EMTDC considering a hydro turbine based generator control system. It can be seen that the proposed relaying by negative sequence current is useful for detection of unbalanced state of large generator.

Classification of Quaternary fault types and segmentation around the Ulsan Fault System (울산단층 주변 제4기 단층의 유형분류와 분절화)

  • 최원학;장천중;신정환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.28-35
    • /
    • 2003
  • Quaternary faults found around the Ulsan Fault System can be divided into 4 types based on the fault outcrop features : Type I fault cuts basements and Quaternary deposits of which remain on both hangwall and footwall. Type II fault is developed only in Quaternary deposit. Type III fault has inclined unconformity after Quaternary faulting. Type IV fault is common type around the Ulsan fault system and has horizontal unconformity surface after cutting earlier Quaternary deposit. After erosion, later Quaternary deposit overlays on both old deposit and basement. The Ulsan Fault System consists of three segments at large scale from north to south based on the lineament rank and shape, Quaternary fault location, and slip rate. The segment boundaries are identified by the existence of the two intervals which show no lineaments and Quaternary faults. But, if detail fault parameters could be obtained and used in segmentation, it can be divided into more than three segments.

  • PDF

Faults detection and identification for gas turbine using DNN and LLM

  • Oliaee, Seyyed Mohammad Emad;Teshnehlab, Mohammad;Shoorehdeli, Mahdi Aliyari
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Applying more features gives us better accuracy in modeling; however, increasing the inputs causes the curse of dimensions. In this paper, a new structure has been proposed for fault detecting and identifying (FDI) of high-dimensional systems. This structure consist of two structure. The first part includes Auto-Encoders (AE) as Deep Neural Networks (DNNs) to produce feature engineering process and summarize the features. The second part consists of the Local Model Networks (LMNs) with LOcally LInear MOdel Tree (LOLIMOT) algorithm to model outputs (multiple models). The fault detection is based on these multiple models. Hence the residuals generated by comparing the system output and multiple models have been used to alarm the faults. To show the effectiveness of the proposed structure, it is tested on single-shaft industrial gas turbine prototype model. Finally, a brief comparison between the simulated results and several related works is presented and the well performance of the proposed structure has been illustrated.

Network Coding-Based Fault Diagnosis Protocol for Dynamic Networks

  • Jarrah, Hazim;Chong, Peter Han Joo;Sarkar, Nurul I.;Gutierrez, Jairo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1479-1501
    • /
    • 2020
  • Dependable functioning of dynamic networks is essential for delivering ubiquitous services. Faults are the root causes of network outages. The comparison diagnosis model, which automates fault's identification, is one of the leading approaches to attain network dependability. Most of the existing research has focused on stationary networks. Nonetheless, the time-free comparison model imposes no time constraints on the system under considerations, and it suits most of the diagnosis requirements of dynamic networks. This paper presents a novel protocol that diagnoses faulty nodes in diagnosable dynamic networks. The proposed protocol comprises two stages, a testing stage, which uses the time-free comparison model to diagnose faulty neighbour nodes, and a disseminating stage, which leverages a Random Linear Network Coding (RLNC) technique to disseminate the partial view of nodes. We analysed and evaluated the performance of the proposed protocol under various scenarios, considering two metrics: communication overhead and diagnosis time. The simulation results revealed that the proposed protocol diagnoses different types of faults in dynamic networks. Compared with most related protocols, our proposed protocol has very low communication overhead and diagnosis time. These results demonstrated that the proposed protocol is energy-efficient, scalable, and robust.

Fault Location for Incomplete-Journey Double-Circuit Transmission Lines on Same Tower Based on Identification of Fault Branch

  • Wang, Shoupeng;Zhao, Dongmei;Shang, Liqun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1754-1763
    • /
    • 2017
  • This paper analyses the characteristics of incomplete-journey double-circuit transmission lines on the same tower formed by single-circuit lines and double-circuit lines, and then presents a fault location algorithm based on identification of fault branch. With the relationship between the three-phase system and the double-circuit line system, a phase-mode transformation matrix for double-circuit lines can be derived. Based on the derived matrix, the double-circuit lines with faults can be decoupled, and then the fault location for an incomplete-journey double-circuit line is achieved by using modal components in the mode domain. The algorithm is divided into two steps. Firstly, the fault branch is identified by comparing the relationships of voltage amplitudes at the bonding point. Then the fault location, on the basis of the identification result, is calculated by using a two-terminal method, and only the fault distance of the actual fault branch can be obtained. There is no limit on synchronization of each terminal sampling data. The results of ATP-EMTP simulation show that the proposed algorithm can be applied within the entire line and can accurately locate faults in different fault types, fault resistances, and fault distances.