• Title/Summary/Keyword: two adjacent structures

Search Result 233, Processing Time 0.77 seconds

Hybrid Control Model of MR Damper for Seismic Response Control of Adjacent Buildings (인접건축물의 지진응답 제어를 위한 MR 감쇠기의 복합제어 모델)

  • Kim, Gee-Cheol;Kang, Joo-Won;Chae, Seoung-Hun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Many researchers have attempted to apply semi-active control systems in the civil engineering structures. Recently, magneto-rheological(MR) fluid dampers have been developed. This MR damper is one of semi-active dampers as a new class of smart dampers. This paper discusses the application of MR damper for seismic response control of adjacent buildings subjected to earthquake. Here, a controllable damping force of MR damper that is installed between adjacent buildings is applied to seismic response control. A hybrid model combines skyhook and groundhook control algorithm so that the benefits of each can be combined together. In this paper, hybrid control model are applied to the multi degree of freedom system representative of buildings in order to reduce seismic response of adjacent buildings. And the performance of hybrid control model is compared with that of others. It was demonstrated that hybrid control model or adjacent buildings with MR damper was effective for seismic response control of two adjacent buildings reciprocally.

Optimal design of nonlinear damping system for seismically-excited adjacent structures using multi-objective genetic algorithm integrated with stochastic linearization method (추계학적 선형화 방법 및 다목적 유전자 알고리즘을 이용한 지진하중을 받는 인접 구조물에 대한 비선형 감쇠시스템의 최적 설계)

  • Ok, Seung-Yong;Song, Jun-Ho;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2007
  • Optimal design method of nonlinear damping system for seismic response control of adjacent structures is studied in this paper. The objective functions of the optimal design are defined by structural response and total amount of the dampers. In order to obtain a solution minimizing two mutually conflicting objective functions simultaneously, multi-objective optimization technique based on genetic algorithm is adopted. In addition, stochastic linearization method is embedded into the multi-objective framework to efficiently estimate the seismic responses of the adjacent structures interconnected by nonlinear hysteretic dampers without performing nonlinear time-history analyses. As a numerical example to demonstrate the effectiveness of the proposed technique, 20-story and 10-story buildings are considered and MR dampers of which hysteretic behaviors vary with the magnitude of the input voltage are considered as nonlinear hysteretic damper interconnecting two adjacent buildings. The proposed approach can provide the optimal number and capacities of the MR dampers, which turned out to be more economical than the uniform distribution system while maintaining similar control performance. The proposed damper system is verified to show more stable performance in terms of the pounding probability between two adjacent buildings. The applicability of the proposed method to the design problem for optimally placing semi-active control system is examined as well.

Numerical investigations of structure-soil-structure interaction on footing forces due to adjacent building

  • Shrish Chandrawanshi;Vivek Garg
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.477-487
    • /
    • 2024
  • The interaction between multiple structures through the supporting soil media, known as structure-soil-structure interaction (SSSI), has become an increasingly important issue due to rapid urbanization. There is a need to investigate the effect of SSSI on the structural response of buildings compared to non-interaction analysis (NIA) and soil-structure interaction (SSI) analysis. In the present study, two identical 4-bay×4-bay, three-story RCC buildings are modeled adjacent to each other with a soil domain beneath it to investigate the effect of SSSI on the forces experienced by footings under gravity and seismic load cases. The ANSYS software is used for modeling various non-interaction and interaction models which work on the principle of FEM. The results indicate that in most of the footings, the SSSI effect causes a significant redistribution of forces compared to SSI and NIA under both gravity and seismic load cases. The maximum interaction effect is observed on the footings that are closer to the adjacent building. The axial force, shear force and bending moment values on these footings show that SSI causes a significant increase in these values compared to non-interaction analysis but the presence of adjacent building relieves these forces significantly.

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.

Seismic Response Enhancement through Stiffness Connection of Two Adjacent Buildings equipped with ATMD (ATMD가 설치된 두 인접빌딩간 강성연결방식을 통한 내진성능 개선)

  • Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.47-53
    • /
    • 2017
  • In this study, we propose a new control system that effectively utilizes the interaction effect of control force through the connection of stiffness member for seismic performance enhancement of two adjacent structures equipped with active tuned mass damper (ATMD). The efficiency of the proposed control system is verified by comparing with the existing independent control system through the numerical simulations of the 10th- and 12th-story buildings. From the numerical results, it is confirmed that the proposed method can show similar or better control performance even with more economical control capacity than the existing independent control system. Another advantage is that the existing system does not exhibit the adaptive control performance in emergency of failure of one control device, whereas the proposed system can achieve successful adaptive control performance by economically and efficiently utilizing the interacting control effect through the connection member.

Probabilistic evaluation of separation distance between two adjacent structures

  • Naeej, Mojtaba;Amiri, Javad Vaseghi;Jalali, Sayyed Ghasem
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.427-437
    • /
    • 2018
  • Structural pounding is commonly observed phenomenon during major ground motion, which can cause both structural and architectural damages. To reduce the amount of damage from pounding, the best and effective way is to increase the separation distance. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. The aim of this research is to estimate probabilistic separation distance between adjacent structures by considering the variability in the system and uncertainties in the earthquakes characteristics through comprehensive numerical simulations. A large number of models were generated using a robust Monte-Carlo simulation. In total, 6.54 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results show that a gap size of 50%, 70% and 100% of the considered design code for the structural periods in the range of 0.1-0.5 s, leads to have the probability of pounding about 41.5%, 18% and 5.8%, respectively. Finally, based on the results, two equations are developed for probabilistic determination of needed structural separation distance.

Seismic pounding effects on adjacent buildings in series with different alignment configurations

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Abdel Shafy, Aly G.A.;Abbas, Yousef A.;Omar, Mohamed;Abdel Latif, Mohamed M.S.;Mahmoud, Sayed
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.289-308
    • /
    • 2018
  • Numerous urban seismic vulnerability studies have recognized pounding as one of the main risks due to the restricted separation distance between neighboring structures. The pounding effects on the adjacent buildings could extend from slight non-structural to serious structural damage that could even head to a total collapse of buildings. Therefore, an assessment of the seismic pounding hazard to the adjacent buildings is superficial in future building code calibrations. Thus, this study targets are to draw useful recommendations and set up guidelines for potential pounding damage evaluation for code calibration through a numerical simulation approach for the evaluation of the pounding risks on adjacent buildings. A numerical simulation is formulated to estimate the seismic pounding effects on the seismic response demands of adjacent buildings for different design parameters that include: number of stories, separation distances; alignment configurations, and then compared with nominal model without pounding. Based on the obtained results, it has been concluded that the severity of the pounding effects depends on the dynamic characteristics of the adjacent buildings and the input excitation characteristics, and whether the building is exposed to one or two-sided impacts. Seismic pounding among adjacent buildings produces greater acceleration and shear force response demands at different story levels compared to the no pounding case response demands.

Blast-load-induced interaction between adjacent multi-story buildings

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.17-29
    • /
    • 2019
  • The present study aims to present a comprehensive understanding of the performance of neighboring multi-story buildings with different dynamic characteristics under blast loads. Two different scenarios are simulated in terms of explosion locations with respect to both buildings. To investigate the effect of interaction between the neighboring buildings in terms of the induced responses, the separation gap is set to be sufficiently small to ensure collisions between stories. An adequately large separation gap is set between the buildings to explore responses without collisions under the applied blast loads. Several blast loads with different peak pressure intensities are employed to perform the dynamic analysis. The finite-element toolbox Computer Aided Learning of the Finite-Element Method (CALFEM) is used to develop a MATLAB code to perform the simulation analysis. The dynamic responses obtained in the scenarios considered herein are presented comparatively. It is found that the obtained stories' responses are governed mainly by the location and intensity of the applied blast loads, separation distances, and flexibility of the attacked structures. Moreover, explosions near a light and flexible building may lead to a significant decrease in blast resistance because explosions severely influence the dynamic responses of the building's stories.

Study on the Influence of Stray current Between Sacrificial Anode Cathodic Protection and Impressed Current Cathodic Protection in Marine Environment

  • Jeong, Jin-A;Kim, Ki-Joon
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.77-81
    • /
    • 2012
  • Cathodic protection(CP) is widely used as a means of protecting corrosion for not only marine structures like ship hulls and offshore drilling facilities, but also underground structures like buried pipelines and oil storage tanks. The principle of CP is that the anodic dissolution of metal can be protected by supplying electrons to the cathode metal. When unprotected structures are nearby to CP systems, interference problems between unprotected and protected structures may be happened. The stray current interference can accelerate the corrosion of nearby structures. So far many efforts have been made to reduce the interference in the electric railway systems adjacent to the underground metal structures like buried pipelines and gas/oil tanks. During recent few decades the protection technologies against stray current induced corrosion have been significantly improved and a number of techniques have been developed. However, there is very limited information an marine environments. Some complex harbor structures are protected by two cathodic protection systems, i.e. sacrificial anode cathodic protection(SACP) and impressed current cathodic protection(ICCP). In this case, when the protection current from sacrificial anodes returns to the cathode through electrolyte, it passes through nearby other low resistance metal structures. In many cases the stray current of ICCP systems influences the function of SACP. In this study, the risk of stray current from the SACP system to adjacent reinforced concrete structures has been verified through laboratory experiments. Concrete and steel pile structures modeled a part of bridge have been investigated in terms of CP potential and current between the two. The variation of stray current according to the magnitude of ICCP/SACP has been studied to mitigate it and to suggest the proper protection criteria.