• Title/Summary/Keyword: twisted crossed products

Search Result 2, Processing Time 0.015 seconds

STABLE RANK OF TWISTED CROSSED PRODUCTS OF $C^{*}-ALGEBRAS$ BY ABELIAN GROUPS

  • Sudo, Takahiro
    • The Pure and Applied Mathematics
    • /
    • v.10 no.2
    • /
    • pp.103-118
    • /
    • 2003
  • We estimate the stable rank of twisted crossed products of $C^{*}-algebras$ by topological Abelian groups. As an application we estimate the stable rank of twisted crossed products of $C^{*}-algebras$ by solvable Lie groups. In particular, we obtain the stable rank estimate of twisted group $C^{*}-algebras$ of solvable Lie groups by the (reduced) dimension and (generalized) rank of groups.

  • PDF

THE SPHERICAL NON-COMMUTATIVE TORI

  • Boo, Deok-Hoon;Oh, Sei-Qwon;Park, Chun-Gil
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.331-340
    • /
    • 1998
  • We define the spherical non-commutative torus $L_{\omega}$/ as the crossed product obtained by an iteration of l crossed products by actions of, the first action on C( $S^{2n+l}$). Assume the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus $A_{p}$ with a matrix algebra $M_{m}$ ( ) (m > 1). We prove that $L_{\omega}$/ $M_{p}$ (C) is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{mp}$ (C), and that the tensor product of $L_{\omega}$/ with a UHF-algebra $M_{p{\infty}}$ of type $p^{\infty}$ is isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) $M_{p{\infty}}$ if and only if the set of prime factors of m is a subset of the set of prime factors of p. Furthermore, it is shown that the tensor product of $L_{\omega}$/, with the C*-algebra K(H) of compact operators on a separable Hilbert space H is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) K(H) if Prim( $L_{\omega}$/) is homeomorphic to $L^{k}$ (n)$\times$ $T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.$T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.e.

  • PDF