• Title/Summary/Keyword: turn-off

Search Result 754, Processing Time 0.025 seconds

A NOVEL SOFT-SWITCHING BOOST-TYPE PWM CONVERTER TOPOLOGY (새로운 영전류영전압 스위칭 승압 DC-DC 컨버터의 성능 해석)

  • Han, Byung-Moon;Baek, Seung-Taek;Kim, Jae-Hong;Kim, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.153-155
    • /
    • 1998
  • A novel soft-switching pulse-width modulated boost-type DC-DC converter topology is presented in this paper. The conventional boost switch is replaced by a switching cell that is comprised of two switch-diode pairs being linked by an inductor for zero-current switching turn-on. The diodes commutate the current that is flowing through the soft-switching inductor when the two switch turn-off. The capacitor is placed in parallel with the two switches during turn-off, thus providing zero-voltage switching turn-off. Simulation results are presented to support the theoretical considerations.

  • PDF

Analysis of Switching Clamped Oscillations of SiC MOSFETs

  • Ke, Junji;Zhao, Zhibin;Xie, Zongkui;Wei, Changjun;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.892-901
    • /
    • 2018
  • SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

An Improved Soft Switching Two-transistor Forward Converter (개선된 소프트 스위칭 Two-transistor forward converter)

  • Kim, Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.137-140
    • /
    • 2000
  • This paper proposes an improved soft switching two-transistor forward converter which uses a novel lossless snubber circuit to effectively control the turn-off dv/dt rate of the main transistors. In the proposed soft switching implementation the turn-off voltage traces across the main two transistors are almost the same contributing to reduce the total capacitive turn-on loss and the snubber current is divided into the two transistors resulting in distributed thermal stresses

  • PDF

Characteristics of power switching semiconductors for high voltage power converters (고압 전력변환장치를 위한 전력용 스윗칭 반도체 소자의 특성)

  • Seo, Beom-Seok;Shim, Eun-Yong;Cho, Sun-Bong;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.409-412
    • /
    • 1990
  • Series connection of power switching semiconductor elements is unavoidable when a high voltage convertor is aimed. However, it is important to equalize distribution of turn-off voltage because the switching elements have different characteristics. In this paper optimal switching control algorithm is proposed so that series connected poker switching semiconductor elements can be always switched simultaneous turn-on and turn-off.

  • PDF

Thermal Performance of Solar Thermal System by On-Off Differential Temperature of Differential Temperature Controller (차온제어기의 On-Off 온도설정에 따른 태양열 시스템 열성능)

  • Shin, U-Cheul;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • On-off differential controller is one of the very important components which affect the system performance of the active solar thermal system. In this study, analyses were made regarding the influence of "on-off" setting temperature on the system efficiency and on the electrical consumption by circulation pump. This study was performed by experiment as well as the computer simulation using TRNSYS program. The simulation system was developed in this study was verified the its reliability by the experimental results. As a results, the turn off temperature(${\Delta}T_{off}$) is much more influence than the turn on temperature(${\Delta}T_{on}$) on the system efficiency. It is more clear and sensitivity in winter season. Finally the optimum on-off setting value and the system on-off pattern according to the several different kind of system was also represented.

Switching Transient Analysis and Design of a Low Inductive Laminated Bus Bar for a T-type Converter

  • Wang, Quandong;Chang, Tianqing;Li, Fangzheng;Su, Kuifeng;Zhang, Lei
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1256-1267
    • /
    • 2016
  • Distributed stray inductance exerts a significant influence on the turn-off voltages of power switching devices. Therefore, the design of low stray inductance bus bars has become an important part of the design of high-power converters. In this study, we first analyze the operational principle and switching transient of a T-type converter. Then, we obtain the commutation circuit, categorize the stray inductance of the circuit, and study the influence of the different types of stray inductance on the turn-off voltages of switching devices. According to the current distribution of the commutation circuit, as well as the conditions for realizing laminated bus bars, we laminate the bus bar of the converter by integrating the practical structure of a capacitor bank and a power module. As a result, the stray inductance of the bus bar is reduced, and the stray inductance in the commutation circuit of the converter is reduced to more than half. Finally, a 10 kVA experimental prototype of a T-type converter is built to verify the effectiveness of the designed laminated bus bar in restraining the turn-off voltage spike of the switching devices in the converter.

Study on the Characteristic Analysis and the Design of the IGBT Structure with Trap Injection for Improved Switching Characteristics (트랩 주입의 구조적 설계에 따른 LIGBT의 전기적 특성 개선에 관한 연구)

  • Gang, Lee-Gu;Chu, Gyo-Hyeok;Kim, Sang-Sik;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.463-467
    • /
    • 2000
  • In this paper, the new LIGBT structures with trap injection are proposed to improve switching characteristics of the conventional SOI LIGBT. The Simulations are performed in order to investigate the effects of the positiion, whidth and concentration of trap injection region with a reduced minority carrier lifetime using 2D device simulator MEDICI. Their electrical characteristics are analyzed and the optimum design parameters are extracted. As a result of simulation, the turn off time for the model A with the trap injection is $0.78\mus$. These results indicate the improvement of about 2 times compared with the conventional SOI LIGBT because trap injection prevents minority carriers which is stored in the n-drift region during turn off switching. The latching current is $1.5\times10^{-4}A/\mum$ and forward blocking voltage is 168V which are superior to those of conventional structure. It is shown that the trap injection is very effective to reduce the turn off time with a little increasing of on-state voltage drop if its design and process parameters are optimized.

  • PDF

Turn-on/off Angle for Maximum Torque of SRM by Using Self-tuning Control (SRM의 자기동조 방식에 의한 최대토크의 턴-온/오프각 제어)

  • Seo Jong-Yun;Cha Hyun-Rok;Seo Jung-Chul;Yang Hyong-Yeol;Kim Kwang-Heon;Lim Young-Cheol;Jang Do-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.243-246
    • /
    • 2001
  • The control of the SRM(Switched Reluctance Motor) is usually based on the non-linear inductance profiles with positions. So determination of optimal switching angle is very different. This paper proposed that the determination method of turn-on/off angle in the SRM drives is to maintain the high torque, which is realized by using self-tuning control method. During the sampling time, a number of pulses from the encoder are checked by using micro-controller. And compared with pre-checked a number of pulses. After calculating difference between two data, turn-on/off angle moves forward or backward direction by using self-tuning method. The optimal turn-on/off angle is determined by iterating such a process and the maximum torque is maintained. Experimental results are provided to demonstrate the validity of the self-tuning controller.

  • PDF

High Frequency Soft Switching Forward DC/DC Converter (고주파 소프트 스위칭 Forward DC/DC 컨버터)

  • 김은수;최해영;조기연;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.19-25
    • /
    • 1999
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

Modeling transient characteristics of NPT IGBT including trun-on condition (턴 온 상태를 고려한 NPT IGBT의 과도 특성 모델링)

  • Ryu, Se-Hwan;Lee, Yong-Kuk;Ahn, Hyoung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.327-330
    • /
    • 2003
  • In this work, current-voltage characteristics with time of NPT(Non-PunchThrough) IGBT is proposed during turn-on and turn-off by using analytical method. From the results, power loss at turn-off dominates the total electrical loss with respect to that at turn-on. The results have been compared with those of PSPICE and show the identical trend of power loss with each other.

  • PDF