• Title/Summary/Keyword: turfgrasses

Search Result 106, Processing Time 0.029 seconds

Ecological Management of Turf Insects and Zoysia Large Patch by Mixing Turfgrass Species (잔디 혼식을 통한 생태학적 병충해 관리)

  • 박봉주
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • Ecological control can contribute to the sustainibility of vegetation management systems by reducing the input currently derived from non-renewable fossil energy sources. The use of turfgrass mixtures is an important tool in turf management. Turfgrass mixtures of two or more compatible and adapted species provide improved tolerance to pest and environmental stress, more so than monostands. The objectives of this study were to evaluated turf insects, pests and zoysia large patch control by turgrass mixtures. In April 2001 and 2002, plots were inoculated with 50g of Rhizoctonia solani AG2-2LP inoculum. Inoculum were treated within a 29cm diamater circle at Zoysia japonica, Zoysia japonica, Poa pratenis, or Festuca arundinacea mixtures. After four weeks, disease severity in each plot was determined. plot area visual ratings were assessed visually on a linera 0 to 100%. In August 2001 and October 2002, turf insects and pests in each plot were investigated in 10cm deep soil cores with 8cm diameters using hole cut. Zoysia large patch affected zoysiagrass monostands more severly than zoysiagrass and cool-season turfgrasses mixtures. It was suggested that the barrier effect of cool-season turfgrass suppressed zoysia large patch in the mixture of zoysiagrass and cool-season turfgrasses. Also, warm-season and cool-season turfgrasses mixtures suppressed insect populations more efficiently than warm-season turfgrass monostands.

Determination of the Optimum Dose Range for a Mutation Induction of Turfgrasses by a Gamma-Ray (잔디류 돌연변이 유기를 위한 적정 방사선 선량범위의 결정)

  • Lee, Hye-Jung;Lee, Geung-Joo;Kim, Dong-Sub;Kim, Jin-Baek;Ku, Ja-Hyeong;Kang, Si-Yong
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2008
  • This study was conducted to determine the optimum dose ranges for a mutation breeding based on the observations of a seed germination and an early growth in turfgrasses. Three warm season (Zoysiagrass, Bermudagrass, and Seashore paspalum) and four cool season turfgrasses (Kentucky bluegrass, Tall fescue, Perennial ryegrass, and Creeping bentgrass) were used in this study. We investigated the percentage of a seed germination and a seedling growth after irradiating the turfgrass seeds with various doses of gamma-ray (50, 100, 150, 200, 250, 300, 400, and 500 Gy). After 24 h with a gamma irradiation, the seeds were sown on the wet filter paper in a petri dish and maintained for 3 weeks at 30$^{\circ}C$ for the warm season turfgrasses and at 25$^{\circ}C$ for the cool season turfgrasses. Data on a seed germination and a seedling growth with three replications were collected. The percentage of seed germination was decreased with an increase of the gamma-ray dose. Shoot and root growth, and the fresh weight were decreased significantly as the radiation dose was increased. A radiation dose indicating a 50% growth inhibition ($LD_{50}$) with a gamma irradiation was varied among those turfgrass species used, with the highest at about 500 Gy for bermudagrass and the lowest at 100Gy for tall fescue. The optimum dose for a gamma irradiation for a selection of turfgrass mutants was considered to be about 300, 150, 500, 150, 200, 100 and 200 Gy for zoysiagrass, seashore paspalum, bermudagrass, Kentucky bluegrass, perennial ryegrass, tall fescue, and creeping bentgrass, respectively.

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.

A Study on the Seasonal Color Characteristics of Warm- and Cool-Season Grasses II. Color Characteristics and Life-span of Leaves in Turfgrasses and Cover Plants+ (난지형 및 한지형 지피식물의 엽색변화에 관한 연구 II. 엽색특성 및 엽수명연장)

  • 심재성;민병훈;서병기
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.293-316
    • /
    • 1995
  • Nitrogen fertilization and cutting practice were studied on turfgrasses and cover plants to investigate the possibility of maintaining green color during the growing season. Research also involved the effect of the nitrogen on a few morphological characteristics of leaf performance elements which might give an information to coloration and life-span of turf leaves. Treatments in the first experiment undertaken on pot included one N level: 350kgN /ha applied as compound fertilizer in split applications of one-half in mid-May and the rest both in late June and August, and four spring-summer cuts: late May, late June, late July and late August. The soil filled in pot a moderately well-drained sandy loam. In the second experiment(field observation) leaf length and width, inflorescence and flowering, and color performance were also investigated. With nitrogen fertilizer applied on turfs, desirable turf color was maintained during a period of poor coloration in specific seasons such as mid-summer for cool season grasses and late fall for warm season grasses comparing to the non-treatment. However, this was not stimulated by cutting treatment to nitrogen status existed. Cutting effect on coloration was more remarkable in both Korean lawngrass and Manilagrass than in cool season turfgrasses such as Italian rye-grass, perennial ryegrass and tall fescue. Especially down-slide of leaf color in cool season turfgrasses could he detected in mid-summer /early fall season ranging up to mid-September. In early November as well as mid-September, Italian ryegrass, perennial ryegrass and tall fes-cue retained a high level of green color as followed by nitrogen application and cutting treatment, and little detectable variation of leaf color notation between cool season turfgrasses was obtained. However, Korean la'vngrass and Manilagrass failed to retain the green color until early November. Color notations in cool season turfgrasses investigated early November on the final date of the experiment ranged from 5 GY 3/1 to 4/8 in 'Ramultra' Italian ryegrass, 'Reveile' perennial ryegrass and 'Arid' tall fescue, but those in Zoysiagrasses were 7.5 YR 4/8 in Korean lawngrass and 2.5 y 5 /6 in Manilagrass. Life-span of leaves was shorter in Italian ryegrass, perennial ryegrass and tall fescue than in beth Korean lawngrass and Manilagrass with and without nitrogen application. In general, leaves appeared in early May had a long life-span than those appeared in late April or mid-June. Nitrogen application significantly prolonged the green color retaining period in perennial ryegrass, Italian ryegrass, Korean lawngrass and Manilagrass, and this was contrasted with the fact that there was no prolonged life-span of leaves emerging in early May and mid-June in tall fescue. SPAD reading values in 48 turfs and cover plants investigated in the field trial were increasing until late June and again decreasing till September. Increasing trends of reading value could be observed in the middle of October in most of grasses. On the other hand, clovers and reed canarygrasses did not restore their color values even in October. Color differences between inter-varieties, and inter-species occurred during the growing season under the field condition implicated that selection of species and /or cultivars for mixture should be taken into consideration. In Munsell color notation investigated in the final date in the middle of November, 32 cultivars belonged under the category of 5 GY and 10 cultivars under the category of 7.5 GY. This was implying that most of cool season turfs and cover plants grown in the center zone of Korean Peninsula which are able to utilize for landscape use can bear their reasonable green color by early or mid-November when properly managed. The applicable possibilities of SPAD readings and Munsell color notation to determine the color status of turfgrasses and cover plants used in this study were discussed.

  • PDF

Effect of a Microbial Product on the Control of Soilborne Diseases of Turfgrasses (미생물제에 의한 잔디의 토양전염병 방제 효과)

  • 박규진;김영호;박은경;김동성
    • Plant Disease and Agriculture
    • /
    • v.1 no.1
    • /
    • pp.19-29
    • /
    • 1995
  • A microbial product composed of three antagonistic fungal isolates (Aspergillus sp., Penicillium sp. and Trichoderma sp.) and three bacterial isolates (Arthrobacter sp., Bacillus sp., and Pseudomonas sp.) was tested for the control of Pythium blight caused by Pythium sp., brown patch by Rhizoctonia solani (anastomosis group(AG) 1-1) and large patch by R. solani (AG 2-2) of turfgrasses. Cultures of the antagonistic fungi and bacteria varied in the effectiveness in reducing disease severity of Pytium blight and brown patch on bentgrass. The antagonistic fungal and bacterial isolates were mixed and cultured at 20-$25^{\circ}C$ for 3 days in a growth medium, and the diluted solution of the microbial culture was applied under the field conditions after inoculation of the above turfgrass pathogens. The treated turfgrass was incubated at 28$^{\circ}C$ in a growth chamber. In this experiment, Pythium blight was almost completely controlled and brown patch was slightly decreased by the microbial product, while no control was observed in large patch of zoysiagrass. In zoysiagrass treated with the microbial culture, thatch accumulation was notably reduced.

  • PDF

Tolerance of Turfgrasses to the Application of Herbicides (제초제 처리에 따른 잔디의 저항성에 관한 연구)

  • 심상열;신영수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.22 no.1
    • /
    • pp.101-110
    • /
    • 1994
  • A field study was carried out to investigate the visual injury of zoysiagrass and creeping bentgrass by the application of various herbicides the result were as follows. 1. Trifluralin + benefin and dithiopyr did not injure creeping bentgrass and zoysiagrass. 2. Creeping bentgrass was safe while zoysiagrass was slightly injured within acceptable level with benefin. 3. Oryzalin caused injury both on creeping bentgrass and zoysiagrass. However, the injury of zoysigrass was within acceptable level while the injury of creeping bentgrass increased without acceptable level when applied at>5kg/ha. 4. Creeping bentgrass was tolerant to pendimethalin only when treated at<3.4kg/ha whereas zoysiagrass was tolerant regardless of rate. 5. Creeping bentgrass treated with fenoxaprop, oxadiazon, and bensulide were severely injured. However, turfgrasses treated with bensulide recovered rapidly when compared with fenoxaprop and oxadiazon. 6. Zoysiagrass treated with 2,4-D, dicambe, bentazon was safe when applied at mid summer.

  • PDF

Identification and Pathogenicity of Rhizoctonia species Isolated from Turfgrasses (잔디에서 분리한 Rhizoctonia spp.의 동정과 병원성)

  • Lee, Du-Hyung;Choe, Yang-Yun;Lee, Jae-Hong;Kim, Jin-Won
    • The Korean Journal of Mycology
    • /
    • v.23 no.3 s.74
    • /
    • pp.257-265
    • /
    • 1995
  • Morphological characteristics and pathogenicity of Rhizoctonia species causing blight diseases of turfgrasses were studied. The species were identified as Rhizoctonia cerealis Van der Hoeven, R. oryzae Ryker et Gooch, and R. solani $K{\ddot{u}hn}$ based on their morphological and cultural characteristics. Isolates of R. solani were assigned to anastomosis groups (AG) with cultural type 1 (1A), 2-2 (IIIB), and 2-2 (IV). R. cerealis, R. oryzae and R. solani induced sheath rot and foliar blight symptoms on creeping bentgrass (Agrostis palustris) and zoysiagrass (Zoysia japonica). Inoculation tests showed that disease severity with isolates of R. cerealis and R. oryzae were more serious to creeping bentgrass than zoysiagrass. AG 1(1A) isolates of R. solani were strongly pathogenic on creeping bentgrass, but moderate to zoysiagrass. AG 2-2 (III) isolates were moderately pathogenic to zoysiagrass, but weakly to creeping bentgrass. AG 2-2 (IV) isolates from zoysiagrass were moderately pathogenic to zoysiagrass, but weakly to creeping bentgrass.

  • PDF

Performance of Three Warm Season Turfgrasses under Linear Gradient Irrigation

  • Ow, Lai Fern;Ghosh, Subhadip
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 2017
  • The appropriate level of irrigation for turfgrasses is vital to the performance of the turfgrass as well as conservation of water. Linear gradient irrigation system (LGIS) facilitates long-term study of turf performance under continuous irrigation gradients at extreme ends of the irrigation scale. The objectives of this study were to: a) determine the minimum irrigation requirements and relative drought resistance in three warm season turfgrasses; and b) evaluate the medium to long-term effects of irrigation levels on turf persistence, weed invasion, and susceptibility to diseases. Results suggest that grasses differed in drought resistance and persistence under variable irrigation regimes. Irrigation (Ep) required for consistent acceptable turf quality for respective grasses was Cynodon dactylon x C. transvaalensis (61%), Zoysia matrella L. Merr (73%), and Stenotaphrum secundatum 'Palmetto' (86%). Brown patch infection was most prevalent in Stenotaphrum secundatum 'Palmetto' at 12 and 125% Ep irrigation. Cynodon dactylon x C. transvaalensis and Zoysia matrella L. Merr were better able to adapt to the various irrigation regimes, and this ability allowed these species to resist drought, and maintain turf coverage which in turn, kept weeds and the occurrence of diseases at bay. Ranking these grasses for their drought tolerance abilities showed that Cynodon dactylon x C. transvaalensis had the most outstanding resistance against drought, followed by Zoysia matrella L. Merr, and lastly, Stenotaphrum secundatum 'Palmetto'. Despite having the highest irrigation requirement, Stenotaphrum secundatum 'Palmetto' was still not able to maintain persistence at high irrigation regimes. Likewise, this grass also lost turf coverage at low irrigation levels.

Effects of Mixed Seeding of Main Revegetation Plants Treated with Different Seeding Amounts of Pennisetum alopecuroides on Cut-Slope Revegetation (수크령 파종량에 따른 주요녹화식물의 혼파가 비탈면 녹화에 미치는 영향)

  • Ham, Kyung-Sik;Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • Pennisetum aloperculoides is a key revegetation species mixed with other plants species and used for revegetating cut-slopes. The purpose of this research is to identify the effects of mixed seeding of revegetation plants on cut-slope revegetation with respect to the quantity of Pennisetum aloperculoides seeds. The coverage ratio and appearance frequency of Pennisetum aloperculoides, and other revegetation species were measured to assess the cut-slope revegetation. We divided Pennisetum treatments into four groups with different Pennisetum seed quantities of $0g/m^2$, $5g/m^2$, $10g/m^2$, and $15g/m^2$. For each treatment group, we mixed identical quantities of seeds from herbaceous flowers (bird's-boot trefoil, aster, chrysanthemums, golden coreopsis and china pink), cool-season turfgrasses, and woody plants (korean lespedeza, indigo and silk tree). The increase in the quantity of the Pennisetum seeds resulted in the higher coverage ratio for Pennisetum, but in the lower coverage ratio for herbaceous flowers, cool-season turfgrasses, and woody plants. We observed a short-term succession process in which the dominant species shifted in the following order: the initial species Pennisetum, herbaceous flowers, and then lastly woody plants. In case of the appearance frequency, we also observed the higher appearance frequency for Pennisetum and the lower appearance frequency for the other plants due to the increase in the quantity of Pennisetum seeds. Pennisetum, bird's-foot trefoil and china pink showed the tendency to decrease the appearance frequency from one month after seeding while cool-season turfgrasses became extinct due to summer drought. In the woody plants, the appearance frequencies of korean lespedeza and indigo were high due to the decrease in quantity of Pennisetum seeds. The silk trees were damaged from winter frost and none emerged at all in 2013 (the following year after the seeding). Korean lespedeza and indigo appeared to have the short-term rapid dominance over other treated revegetation plants.