• Title/Summary/Keyword: turbulent shear layer

Search Result 172, Processing Time 0.021 seconds

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

Comparison between Wilcox к - ω turbulence models for supersonic flows (초음속 유동 해석을 위한 Wilcox к - ω 난류 모델 비교)

  • Kim, Min-Ha;Parent, Bernard
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.375-384
    • /
    • 2012
  • This paper presents numerical results comparing the performance of the 2008 Wilcox $\mathcal{k}-{\omega}$ turbulence model to the one of the 1988 Wilcox $\mathcal{k}-{\omega}$ model for supersonic flows. A comparison with experimental data is offered for a shock wave/turbulent boundary layer interaction case and two ramp injector mixing cases. Furthermore, a comparison is performed with empirical correlations on the basis of skin friction for flow over a flat plate and shear layer growth for a free shear layer. It is found that the maximum injectant mass fraction of some ramp injector cases is better predicted using the 1988 Wilcox model. On the other hand, the 2008 model performs better in simulating shock-boundary layer cases.

NUMERICAL INVESTIGATION OF TURBULENT FLOW FROM AN ANNULAR JET (환형제트 난류유동에 대한 수치해석 연구)

  • Kim, Jungwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In the present study, the turbulent flow from an annular jet is investigated by using large eddy simulation. Particularly, the effect of the ratio of the inner and outer diameters is one of the main interests of this study. The instantaneous fields presented in this paper showed that behind the jet exit the backflow region, as well known in literatures, exists, and its detailed behavior depends on the ratio of the inner and outer diameters ($D_1/D_2$). The dependence on $D_1/D_2$ is attributed to the different shear layer development according to $D_1/D_2$. At small $D_1/D_2$, the development of the outer shear layer is similar to that from the circular jet. However, with increasing $D_1/D_2$, the interaction between the outer and inner shear layers becomes strong, resulting in fast transition to turbulence.

Effect of tip configuration of an oil fence on wake structure behind the fence (오일펜스의 tip 형상이 후류유동에 미치는 영향에 관한 연구)

  • Koh, Min-Seok;Lee, Sang-Joon;Lee, Choung-Mook;Chung, Sang-Kook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.772-776
    • /
    • 2001
  • The flow structures of turbulent shear layer behind oil fences with different tip configurations were investigated experimentally using flow visualization and PIV velocity field measurement. An oil fence was installed in a circulating water channel and the flow structure around the fence tip was mainly analyzed in this experiment. The four tip configurations tested in this experiment are knife edge; semi-circle edge, circular edge and rectangular edge. The 300 instantaneous velocity fields were measured using the single-frame PIV system and they were ensemble averaged to give the mean velocity field and spatial distribution of turbulent statistics. Free stream velocity was fixed at 10ms/sec and the corresponding Reynolds number based on the fence height was Re=4000. As a result, for the oil fence with rectangular edge, the streamwise velocity component was decreased. On the other hand it was increased for the oil fence with circular edge. For all four fences tested in this study, general flow pattern of the lower shear layer is analogous but the upper layer shows difference depending on the tip configurations. The oil fence with circular edge has more diffusive upper shear layer than that of the others. The shear layer of the oil fence with rectangular edge has relatively thin thickness. The oil fence with circular edge was found to be proper shape for tandem fence.

  • PDF

Viscous Frictional Drag Reduction by Diffusion of Injecting Micro-Bubbles (미소 기포 분포의 난류 확산에 의한 점성 마찰력 저감)

  • Moon, Chul-Jin;Kim, Si-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.2
    • /
    • pp.109-115
    • /
    • 1994
  • This paper presents a new concept to reduce turbulent frictional drag by injecting micro-bubble into near the buffer layer of turbulent boundary layer on flat plate. The concentrations of micro bubble distribution in the boundary was calculater by eddy viscosity equations in the governing equations. When near region of the buffer layer of turbulent boundary layer is filled with micro-bulle of air and viscous of the region is kept low, the velocity profile in the near region should be changed substantially. Then the Reynolds stress in the region becomes less, which guide to lower velocity gradient there. It results in reduction of velocity gradient at the viscous sublayer, which gives the reduction of shear stress at the wall.

  • PDF

Reynolds Stress Distribution on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate (평판 근접 후류에서 경계층의 유동조건에 따른 레이놀즈 응력분포)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.53-66
    • /
    • 2004
  • An experimental study was carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. The flow conditions in the vicinity of the trailing edge that is influenced by upstream condition history are an essential factor that determines the physical characteristics of a near-wake. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed in order to investigate the evolution of symmetric and asymmetric wake. An x-type hot-wire probe(55P61) is employed to measure at 8 stations in the near-wake. Test results show that the near-wake for the case of a turbulent boundary layer is relatively insensitive to instability after separating at the trailing edge, and Reynolds shear stress in the near-wake for the case of a turbulent boundary layer collapses due to turbulent kinetic energy.

  • PDF

Effects of Periodic Blowing Through a Spanwise Slot on a Turbulent Boundary Layer (II) - Effects of Blowing Frequency - (슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (II) - 분사 주파수의 효과 -)

  • Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • A direct numerical simulation is performed to analyze the effects of a localized time-periodic blowing on a turbulent boundary layer flow at R $e_{+}$=300. Main emphasis is placed on the blowing frequency effect on near-wall turbulent flow structures at downstream. Wall-normal velocity on a spanwise slot is varied periodically at different frequencies (0.004$\leq$ $f^{+}$$\leq$0.080). The amplitude of periodic blowing is $A^{+}$=0.5 in wall nit, which corresponds to the value of $v_{rms}$ at $y^{+}$=15 without blowing. The frequency responses are scrutinized by examining the phase or time-averaged turbulent statistics. The optimal frequency ( $f^{+}$=0.03) is observed, where maximum increase in Reynolds shear stress, streamwise vorticity fluctuations and energy redistribution occurs. The phase-averaged stretching and tilting term are investigated to analyze the increase of streamwise vorticity fluctuations which are closely related to turbulent coherent structures. It is found that the difference between PB and SB at a high blowing frequencies is negligible.e.e.

Influence of Local Ultrasonic Forcing on a Turbulent Boundary Layer (국소적 초음파 가진이 난류경계층에 미치는 영향)

  • Park Young Soo;Sung Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.78-89
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient (C$_{f}$) decreases 60$\%$and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall. In the vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (II) -A Phase-Averaged Characteristic- (주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(II) -위상평균된 유동특성-)

  • Park, Tae-Chun;Jeon, U-Pyeong;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.786-798
    • /
    • 2001
  • This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further down stream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall.

Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium

  • Ghaitani, M.M.;Majidian, A.;Shokri, V.
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.133-140
    • /
    • 2020
  • In this paper, critical fluid velocity and frequency of laminated pipe conveying fluid are presented. Each layer of the pipe is reinforced by functionally graded carbon nanotubes (FG-CNTs). The internal fluid is assumed turbulent and the induced forces are calculated by momentum equations. The pipe is resting on viscoelastic foundation with spring, shear and damping constants. The motion equations are derived based on classical shell theory and energy method. Differential quadrature method (DQM) is used for solution and obtaining the critical fluid velocity. The effects of volume percent and distribution of CNT, boundary condition, lamina layer number, length to radius ration of pipe, viscoelastic medium and fluid velocity are shown on the critical fluid velocity. Results show that with increasing the lamina layer number, the critical fluid velocity increases.