• Title/Summary/Keyword: turbulent nonpremixed flame

Search Result 52, Processing Time 0.024 seconds

The Stability of Turbulent nonpremixed interacting Flames (다수노즐에 의한 확산화염의 안정성 확대에 관한 연구)

  • Kim, Jin-Hyun;Lee, Byeong-Jun
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.201-207
    • /
    • 2003
  • Characteristic of turbulent nonpremixed interacting flames are investigated experimentally 8 or 9 nozzles are arranged in the shape of matrix or circle. When there is no center nozzle, flame is more stable than with center nozzle case. It is shown that these blowout limit enlargements are related with the recirculation of burnt gases. The interacting flame base was not located at the stoichiometric point. NO concentrations of interacting flame are smaller than that of single flame using same area nozzle.

  • PDF

Numerical Study on Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 선회난류 비예혼합 화염장의 화염구조 및 NOx 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo;Joo, Yong-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.10-17
    • /
    • 2009
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas nonpremixed flames. In order to realistically represent the turbulencechemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model (EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the effects of the chemical kinetics, the flame structure, and NOx formation characteristics in the turbulent Syngas nonpremixed flames.

  • PDF

Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 난류 선회 비예혼합 연소기의 화염구조 및 공해물질 생성의 해석)

  • Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.289-291
    • /
    • 2012
  • The present study numerically investigate detailed flame structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. And level-set approach is also utilized to account for the partially premixing effect at fuel and oxidizer injector in KEPRI nonpremixed combustor. Based on numerical results, the detailed discussion has been made for the precise structure and NOx formation characteristics of the turbulent syngas nonpremixed flames.

  • PDF

Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirl Burner (석탄가스 선회난류 연소기의 화염구조 및 공해물질 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.449-452
    • /
    • 2007
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interact ion and the spatial inhomogeneity of scalar dissipation rate. the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the EPFM model can effectively account for the detailed mechanisms of NOx format ion including thermal NO path, prompt and nitrous NOx format ion, and reburning process by hydrocarbon radical without any ad-hoc procedure. validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the sensitivity of the Syngas chemical kinetics as well as the precise structure and NOx formation characteristics of the turbulent Syngas nonpremixed flames.

  • PDF

Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transported Probability Density Function Model (수송확률밀도함수 모델을 이용한 난류비예혼합 파일럿 안정화 화염장 해석)

  • Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.15-21
    • /
    • 2010
  • The transported probability density function(PDF) model has been applied to simulate the turbulent nonpremixed piloted jet flame. To realistically account for the mixture fraction PDF informations on the turbulent non-premixed jet flame, the present Lagrangian PDF transport approach is based on the joint velocity-composition-turbulence frequency PDF formulation. The fluctuating velocity of stochastic fields is modeled by simplified Langevin model(SLM), turbulence frequency of stochastic fields is modeled by Jayesh-Pope model and effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate the present approach, the numerical results obtained by the joint velocity-composition-turbulence frequency PDF model are compared with experimental data in terms of the unconditional and conditional means of mixture fraction, temperature and species and PDFs.

Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets (제한공간에서 비예혼합 난류제트 화염의 부상특성)

  • Cha, Min-Suk;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.41-49
    • /
    • 1996
  • Effects of ambient geometry on the liftoff characteristics are experimentally studied for nonpremixed turbulent jet flames. To clarify the inconsistency of the nozzle diameter effect on the liftoff height, the ambiences of finite and infinite domains are studied. For nonpremixed turbulent jet issuing from a straight nozzle to infinite domain, flame liftoff height increases linearly with nozzle exit mean velocity and is independent of nozzle diameter. With the circular plate installed on the upstream of nozzle exit, flame liftoff height is lower with plate at jet exit than without, but flame liftoff characteristics are similar to the case of infinite domain. For the confined jet having axisymmetric wall boundary, the ratio of the liftoff height and nozzle diameter is proportional to the nozzle exit mean velocity demonstrating the effect of the nozzle diameter on the liftoff height. The liftoff height increases with decreasing outer axisymmetric wall diameter. At blowout conditions, the blowout velocity decreases with decreasing outer axisymmetric wall diameter and liftoff heights at blowout are approximately 50 times of nozzle diameter.

  • PDF

Flamelet and CMC Modeling for the Turbulent Recirculating Nonpremixed Flames (Flamelet 및 CMC 모델을 이용한 재순환 비예혼합 난류 화염장의 해석)

  • Kim, Gun-Hong;Kang, Sung-Mo;Kim, Yong-Mo;Kim, Seong-Ku
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.75-82
    • /
    • 2004
  • The conditional moment closure(CMC) model has been implemented in context with the unstructured-grid finite-volume method which efficiently handle the physically and geometrically complex turbulent reacting flows. The validation cases include a turbulent nonpremixed $CO/H_2/N_2$ Jet flame and a turbulent nonpremixed $H_2/CO$ flame stabilized on an axisymmetric bluff-body burner. In terms of mean flame field, minor species and NO formation, numerical results has the overall agreement with expermental data. The detailed discussion has been made for the turbulence-chemistry interaction and NOx formation characteristics as well as the comparative performance for CMC and flamelet model.

  • PDF

Analysis of the Effects of Fuel-side Nitrogen Dilution and Pressure on NOx Formation of Turbulent Syngas Nonpremixed Jet Flame (질소희석과 압력이 석탄가스 난류 확산화염장의 NOx 생성특성에 미치는 영향 해석)

  • Park, Sangwoon;Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.63-64
    • /
    • 2012
  • The present study has numerically investigated the effects of the fuel-side nitrogen dilution on the precise structure and NOx formation characteristics of the turbulent syngas nonpremixed flames. Numerical results indicate that for highly diluted case, the flame structure is dominantly influenced by the turbulence-chemistry interaction and marginally modified by the radiation effect. On the other hand, no-dilution case with the longer flight time and the relatively intermediate scalar dissipation rate is influenced strongly by the radiative cooling as well as moderately by the turbulence-chemistry interaction.

  • PDF

Flamelet and Conditional Moment Closure Modeling for the Turbulent Recirculating Nonpremixed Flames (화염편 및 조건평균법 모델을 이용한 재순환 비예혼합 난류 화염장의 해석)

  • Kim, Gun-Hong;Kang, Sung-Mo;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1616-1624
    • /
    • 2004
  • The conditional moment closure(CMC) model has been implemented in context with the unstructured-grid finite-volume method which efficiently handle the physically and geometrically complex turbulent reacting flows. The validation cases include a turbulent nonpremixed CO/$H_2$/$N_2$ Jet flame and a turbulent nonpremixed $H_2$/CO flame stabilized on an axisymmetric bluff-body burner. In terms of mean flame field, minor species and NO formation, numerical results has the overall agreement with expermental data. The detailed discussion has been made for the turbulence-chemistry interaction and NOx formation characteristics as well as the comparative performance for CMC and flamelet model.

Fully coulpled CMC modeling for three-dimensional turbulent nonpremixed syngas flame (CMC 모델을 이용한 난류 비예혼합 Syngas 화염장 해석)

  • Kim, Gun-Hong;Lee, Jung-Won;Kim, Yong-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.111-120
    • /
    • 2006
  • The fully coupled conditional moment closure(CMC) model has been developed to realistically simulate the structure of complex turbulent nonpremixed syngas flame, in which the flame structure could be considerablyl influenced by the turbulence, transport history, and heat transfer as well. In order to correctly account for the transport effect, the CMC transport equations fully coupled with the flow and mixing fields are numerically solved. The present CMC approach has successfully demonstrated the capability to realistically predict the detailed structure and the overall combustion characteristics. The numerical results obtained in this study clearly reveal the importance of the convective and radiative heat transfer in the precise structure and NOx emission of the present confined combustor with a cooling wall.

  • PDF