• Title/Summary/Keyword: turbulent flame

Search Result 425, Processing Time 0.021 seconds

Flame Length Characteristics of $CH_4/O_2$ on Jet Diffusion Flame (제트 확산화염에서 $CH_4/O_2$의 화염길이 특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Kim, Han-Seok;Ahn, Kook-Young;Kim, Young-Mo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1328-1333
    • /
    • 2004
  • The Flame length of $CH_4$ with the Oxidizer of air and $O_2$ has been measured respectively for the nozzle diameter of 1.6mm, 2.7mm, 4.4mm and 7.7mm. In all $CH_4$ flame on oxidizer of air and $O_2$. the flame length was independent of the initial jet diameter, dependent only on the flowrate in laminar flame regime, and in turbulent flame dependent on the initial jet diameter. Using correlation equation of Delichatsios, the flame length has been expected exactly for $CH_4/air$ flame, but has been underestimated for $CH_4/O_2$ flame. This paper has proposed correlation equation of $CH_4/O_2$ flame.

  • PDF

FDF-based analysis of nonlinear combustion instability in the lean premixed combustor (FDF를 이용한 메탄 희박 예혼합 연소기의 비선형 열음향학적 불안정성 해석)

  • Oh, Seungtaek;Shin, Yungjun;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.115-116
    • /
    • 2015
  • In the present approach, the flame-acoustics interaction is represented by FDF (Flame Describing Function) which is a important source term in the Helmholtz' equation. In this study, the combustion instability is analyzed by the forced mode strategy with the measured FDF. Numerical results indicate that the present approach reasonably well predicts the essential features of the combustion instability characteristics in the lean premixed combustor under the gas-turbine like environment.

  • PDF

LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor (모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Hyun-Yong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

A Study on the Measurement of Temperature and Soot for Diffusion Flame in a Visualized D.I Diesel Engine Using the Two-color Method (이색법을 이용한 직분식 디젤 가시화 엔진내의 확산화염 온도 및 매연 측정에 관한 연구)

  • Han, Yong-Taek;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.177-185
    • /
    • 2007
  • The temperature and soot of the visualized diesel engine's turbulent flow of flame was qualitatively measured. In combustion chamber, in order to judge the affect that the swirl has on the in-cylinder's current, was used two different heads with different values. Using the high speed camera, and the results were analyzed using the heat release rate produced by the pressure sensor. In order to measure the temperature and soot of the turbulent flames like that of the diesel flames two color methods were used temperature and the soot of the flames according to the conditions through analyzing the two wavelengths of the flames. It was possible to measure the highest temperature of the non-swirl head visualized engine which is approximately 2400K, and that swirl head engine managed up to 2100K. With respect to the visualized diesel engine soot, we got the grasp of the KL factor which bears the qualitative information of soot. This study is dedicated to suggesting the possibility of measuring not only the temperature but also soot of the diffusion flame of the diesel engine turbulent flames through such method.

Characteristization of Spray Combustion and Turbulent Flame Structures in a Typical Diesel Engine Condition (디젤 엔진 운전 조건에서 분무 연소 과정과 난류 화염 구조 특성에 대한 해석)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2009
  • Simulation is performed to analyze the characteristics of turbulent spray combustion in a diesel engine condition. An extended Conditional Moment Closure (CMC) model is employed to resolve coupling between chemistry and turbulence. Relevant time and length scales and dimensionless numbers are estimated at the tip and the mid spray region during spray development and combustion. The liquid volume fractions are small enough to support validity of droplets assumed as point sources in two-phase flow. The mean scalar dissipation rates (SDR) are lower than the extinction limit to show flame stability throughout the combustion period. The Kolmogorov scales remain relatively constant, while the integral scales increase with decay of turbulence. The chemical time scale decreases abruptly to a small value as ignition occurs with subsequent heat release. The Da and Ka show opposite trends due to variation in the chemical time scale. More work is in progress to identify the spray combustion regimes.

  • PDF

Flamelet Modeling for Combustion Processes of Hybrid Rocket Engine (화염편 모델을 이용한 하이브리드 로켓의 연소과정 해석)

  • Lim, Jae-Bum;Kang, Sung-Mo;Kim, Yong-Mo;Yoon, Myung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.237-240
    • /
    • 2006
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. Accordingly, the recent research efforts are focused on the improvement of engine efficiency and regressionrate in the hybrid rocket engine. The present study has numerically investigated the combustion processes and the flame structure in the hybrid rocket engine. The turbulent combustion is represented by the flamelet model and Low Reynolds number $k-{\varepsilon}$turbulent model is employed to reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect. Numerical results suggest that the present approach is capable of realistically simulating the combustion characteristics of the hybrid rocket engines.

  • PDF

NUMERICAL MODELING FOR FLAME STABILIZATION OF GAS TURBINE COMBUSTOR (가스터빈 엔진의 화염안정성에 대한 수치모델링)

  • Kang Sungmo;Kim Yongmo;Chung Jae-Hwa;Ahn Dal-Hong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.201-206
    • /
    • 2005
  • In order to realistically represent the complex turbulence-chemistry interaction at the partially premixed turbulent lifted flames encountered in the gas turbine combustors, the combined conserved-scalar/level-set flamelet approach has been adopted. The parallel unstructured-grid finite-volume method has been developed to maintain the geometric flexibility and computational efficiency for the solution of the physically and geometrically complex flows. Special emphasis is given to the swirl effects on the combustion characteristics of the lean-premixed gas turbine combustor. Numerical results suggest that the present approach is capable of realistically simulating the combustion characteristics for the lean-premixed gas turbine engines and the lifted turbulent jet flame with a vitiated coflow.

  • PDF

A Study on the NOx Emission of the Turbulent Diffusion Flame Formed behind the After Burner (후연소기에 형성된 난류확산화염에서의 NOx생성에 관한 연구)

  • Lee, U-Seop;Kim, Gyu-Seong;Kim, Tae-Han;Lee, Do-Hyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.22-28
    • /
    • 1999
  • The purpose of this study is to investigate the NOx emission of turbulent diffusion flame formed in the after burner, which is located on the waste gas coming out from the test furnace. Three types of flame was tested and each of which was changed by adequate equivalence ratio. It is necessary to study more about NOx reduction effect in the after burner system.

  • PDF

Prediction of NOx Formation Characteristics in Turbulent Nonpremixed Hydrogen-Air Jet Flames (비예혼합 수소-공기 난류제트화염내의 NOx 생성특성 예측)

  • Kim, S.K.;Kim, Y.M.;Ahn, K.Y.;Oh, K.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.165-170
    • /
    • 1998
  • Turbulent nonpremixed $H_2$-air jet flames are numerically investigated using the joint PDF model. The reaction progress variable is derived by assuming the radicals 0, H, and OH to be in partial equilibrium and additional species $HO_2$ and $H_2O_2$ in steady state. The model is extended to npnadiabatic flame by introducing additional variable for the transport of enthalpy and radiative source term is calculated using a local, geometry independent model. In terms of flame structure and NO formation, the predicted results are favorably agreed with experimental data. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES))

  • 황철홍;이창언
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.79-88
    • /
    • 2006
  • In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.