• Title/Summary/Keyword: turbulence profiles

Search Result 200, Processing Time 0.026 seconds

Experimental Study on Turbulent Characteristics of Swirling Flow in 90$^{\circ}$ Degree Circular Tube by Using a PIV Technique (PIV기법을 이용한 원헝단면을 갖는 90$^{\circ}$ 곡관내의 선회유동의 난류특성에 관한 실험적 연구)

  • Chang Tae-Hyun;Lee Hae Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.38-46
    • /
    • 2003
  • An experimental investigation was performed to study the turbulent characteristics of swirling flow a 90$^{\circ}C$ circular tube for Re = 10,000, 15,000 and 20,000. 2D-PIV(Particle Image Velocimetry)technique was employed to measure the fluctuation velocity field. The results include spatial distributions of mean velocity vectors, turbulence intensity and turbulence kinetic energy. The axial and radial turbulence intensities, and kinetic energy profiles show double-peak structures in the inlet region of the 90 degree bend and the profiles are disappeared along the test tube with decaying the swirl intensity.

  • PDF

Numerical simulation of flow past 2D hill and valley

  • Chung, Jaeyong;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Numerical simulation of flow past two-dimensional hill and valley is presented. Application of three turbulence models - the standard and modified (Kato-Launder) $k-{\varepsilon}$ models and standard $k-{\omega}$ model - is discussed. The computational methodology is briefly described. The mean velocity and turbulence intensity profiles, obtained from numerical simulations of flow past the hill, are compared with the experimental data acquired in a boundary-layer wind tunnel at Colorado State University. The mean velocity, turbulence kinetic energy and Reynolds shear stress profiles from numerical simulations of flow past the valley are compared with published experimental data. Overall, the results of simulations employing the standard $k-{\varepsilon}$ model were found to be in a better agreement with the experimental data than those obtained using the modified $k-{\varepsilon}$ model and the $k-{\omega}$ model.

Bora wind characteristics for engineering applications

  • Lepri, Petra;Vecenaj, Zeljko;Kozmar, Hrvoje;Grisogono, Branko
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.579-611
    • /
    • 2017
  • Bora is a strong, usually dry temporally and spatially transient wind that is common at the eastern Adriatic Coast and many other dynamically similar regions around the world. One of the Bora main characteristics is its gustiness, when wind velocities can reach up to five times the mean velocity. Bora often creates significant problems to traffic, structures and human life in general. In this study, Bora velocity and near-ground turbulence are studied using the results of three-level high-frequency Bora field measurements carried out on a meteorological tower near the city of Split, Croatia. These measurements are analyzed for a period from April 2010 until June 2011. This rather long period allows for making quite robust and reliable conclusions. The focus is on mean Bora velocity, turbulence intensity, Reynolds shear stress and turbulence length scale profiles, as well as on Bora velocity power spectra and thermal stratification. The results are compared with commonly used empirical laws and recommendations provided in the ESDU 85020 wind engineering standard to question its applicability to Bora. The obtained results report some interesting findings. In particular, the empirical power- and logarithmic laws proved to fit mean Bora velocity profiles well. With decreasing Bora velocity there is an increase in the power-law exponent and aerodynamic surface roughness length, and simultaneously a decrease in friction velocity. This indicates an urban-like velocity profile for smaller wind velocities and a rural-like velocity profile for larger wind velocities. Bora proved to be near-neutral thermally stratified. Turbulence intensity and lateral component of turbulence length scales agree well with ESDU 85020 for this particular terrain type. Longitudinal and vertical turbulence length scales, Reynolds shear stress and velocity power spectra differ considerably from ESDU 85020. This may have significant implications on calculations of Bora wind loads on structures.

Core Formation in a Turbulent Molecular Cloud

  • Kim, Jong-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.106.2-106.2
    • /
    • 2011
  • The two competing theories of star formation are based on turbulence and ambipoar diffusion. I will first briefly explain the two theories. There have been analytical (or semi-analytic) models, which estimate star formation rates in a turbulent cloud. Most of them are based on the log-normal density PDF (probability density function) of the turbulent cloud without self-gravity. I will first show that the core (star) formation rate can be increased significantly once self-gravity of a turbulence cloud is taken into account. I will then present the evolution of molecular line profiles of HCO+ and C18O toward a dense core that is forming inside a magnetized turbulent molecular cloud. Features of the profiles can be affected more significantly by coupled velocity and abundance structures in the outer region than those in the inner dense part of the core. During the evolution of the core, the asymmetry of line profiles easily changes from blue to red, and vice versa. Finally, I will introduce a method for incorporating ambipolar diffusion in the strong coupling approximation into a multidimensional magnetohydrodynamic code.

  • PDF

Synthetic Turbulence Effect in Subsonic Backward Facing Step Flow Using LES (LES을 이용한 후향 계단 유동에서의 Synthetic turbulence 효과 연구)

  • Ahn, Sang-Hoon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • The synthetic turbulence generation model for inlet boundary conditions of subsonic Backward Facing Step (BFS) was investigated. The average u-velocity and Reynolds stress at inlet boundary follows experimental data. Synthetic Eddy Method (SEM), random noise, and uniform flow conditions were implemented relative to the synthetic turbulence generation method. A three dimensional Large Eddy Simulation (LES) was applied for turbulent flow simulation. Turbulent and mean flow characteristics such as flow reattachment length, velocity profiles, and Reynolds stress profiles of BFS were compared with respect to the turbulent effects.

Numerical computation of turbulent flow in a square sectioned $180^{\circ}$ bend by low-Reynolds-number second moment turbulence closure (저레이놀즈수 2차 모멘트 난류모형에 의한 정사각단면의 $180^{\circ}$ 곡덕트 난류유동의 수치해석)

  • Sin, Jong-Geun;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2650-2669
    • /
    • 1996
  • A new low Reynolds number nonlinear second moment turbulence closure was introduced to analyze a square sectioned 180.deg. bend flow. Inclusion of nonlinear return to isotropy term and cubic mean pressure strain term has brought out a marked improvement in the level of agreement with measured velocity profiles. Optimization of present closure was performed by comparison of computed velocity profiles with the experimental ones with variation of nonlinear return to isotropy term and quadratic and cubic pressure-strain model. Progressive vortex breakdown due to the interaction of primary and secondary flows was well captured by using the optimized second moment turbulence closure.

Characteristics of Rotor Blade Tip Vortices with Spanwise Slots (스팬방향 슬롯을 가지는 회전익 끝와류의 특성)

  • Chung, Woon-Jin;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1343-1350
    • /
    • 2000
  • The evolutionary structure of tip vortices has been investigated with a two-dimensional LDV system for a plain and a slotted blade, respectively. To analyze the effect of slots which bypasses a part of main stream into the tip face, velocity profiles, vortex sizes, their displacements and turbulence intensities during one revolution of the rotor were measured by the phase averaging process. For the comparison of circumferential velocity components of the plain blade and the slotted blade, the peak values of the slotted blade were lower than those of the plain blade, and axial velocity components of the slotted blade were considerably larger than those of the plain blade. The slotted rotor blade enlarged the core size and made the vortex delayed compared with those of the plain blade at the same wake ages. Turbulence profiles had peaks inside the core radii and decayed gradually in the radial direction of vortex coordinate. Also, using a quasi 3-D LDV measurement technique the budget of turbulence kinetic energy was analyzed in radial direction of the vortex core.

REYNOLDS STRESS MODELING OF OPEN-CHANNEL FLOWS OVER BEDFORMS

  • Choi, Sung-Uk;Kang, Hyeong-sik
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.247-258
    • /
    • 2002
  • This paper presents a non-isotropic turbulence modeling of flows over bedforms. The Reynolds stress model is used for the turbulence closure. In the model, Launder, Reece, and Rodi's model and Hanjalic and Launder's model are employed f3r the pressure strain correlation term and the diffusion term, respectively. The mean flow and turbulence structures are simulated and compared with profiles measured in the experiments. The numerical solutions from two-equation turbulence models are also provided for comparisons. The Reynolds stress model yields the separation length of eddy similar to the other numerical results. Using the developed model, the resistance coefficients are also estimated for the flows at different Froude numbers. Karim's (1999) relationship is used to determine the bedform geometry. It is found that the values of the form drag and the skin friction are very similar to those obtained by the other turbulence models. meaning higher values of the form drag and lower values of the skin friction compared with the empirical formulas.

  • PDF

Turbulence Structures of Flow in Concentric Annuli with Rough Outer Wall (외벽에 거칠기가 있는 이중동심관 유동의 난류구조)

  • 김경천;안수환;이병규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2443-2453
    • /
    • 1994
  • The structure of turbulence of fully developed flow through four concentric annuli with the rough outer wall was investigated experimentally for a Reynolds number range Re=15, 000-93, 000. Turbulence intensities were measured in three(u, v, w) directions, and turbulence shear stresses in annuli of radius=0.13, 0.26, 0.4 and 0.56, respectively. Due to the square roughness element attached periodically along the axial direction, the radial velocity fluctuations show similar distribution regardless of the different .alpha.cases. However, the axial and circumferential velocity fluctuation profiles demonstrate the longitudinal turbulence structures are strongly influenced by the .alpha. values. The turbulent eddy viscosity deduced form mean velocity distributions and the measured Reynolds shear stresses are also presented and discussed.

A study on the change of turbulence structure in a diffuser (확대관의 난류구조 변동에 관한 연구)

  • Lee, Jang-Hwan;Han,Yong-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 1997
  • The change of the structure of homogeneous turbulence subject to irrotational strains has been studied in an anti-Morel type diffuser (center matched cubic contour) using the hot wire anemometry. It was observed that the profiles of mean velocities and turbulence velocities along the center line were stable at the entrance region but rapidly changed near the matching point. The wall induced turbulence at the entrance region grows fast and was diffused toward the center at downstream. It was also observed that the axial turbulence grows faster than the radial one in the middle region of the diffusing flow and that the diffusing process has the vortex compression mechanism due to the conservation of angular momentum. These phenomena are frequently observed at the initial flow region of the free jet.