• 제목/요약/키워드: turbulence modelling

검색결과 63건 처리시간 0.02초

Numerical modelling of shelter effect of porous wind fences

  • Janardhan, Prashanth;Narayana, Harish
    • Wind and Structures
    • /
    • 제29권5호
    • /
    • pp.313-321
    • /
    • 2019
  • The wind blowing at high velocity in an open storage yard leads to wind erosion and loss of material. Fence structures can be constructed around the periphery of the storage yard to reduce the erosion. The fence will cause turbulence and recirculation behind it which can be utilized to reduce the wind erosion and loss of material. A properly designed fence system will produce lesser turbulence and longer shelter effect. This paper aims to show the applicability of Support Vector Machine (SVM) to predict the recirculation length. A SVM model was built, trained and tested using the experimental data gathered from the literature. The newly developed model is compared with numerical turbulence model, in particular, modified $k-{\varepsilon}$ model along with the experimental results. From the results, it was observed that the SVM model has a better capability in predicting the recirculation length. The SVM model was able to predict the recirculation length at a lesser time as compared to modified $k-{\varepsilon}$ model. All the results are analyzed in terms of statistical measures, such as root mean square error, correlation coefficient, and scatter index. These examinations demonstrate that SVM has a strong potential as a feasible tool for predicting recirculation length.

Modelling of starch industry wastewater microfiltration parameters by neural network

  • Jokic, Aleksandar I.;Seres, Laslo L.;Milovic, Nemanja R.;Seres, Zita I.;Maravic, Nikola R.;Saranovic, Zana;Dokic, Ljubica P.
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.115-121
    • /
    • 2018
  • Artificial neural network (ANN) simulation is used to predict the dynamic change of permeate flux during wheat starch industry wastewater microfiltration with and without static turbulence promoter. The experimental program spans range of a sedimentation times from 2 to 4 h, for feed flow rates 50 to 150 L/h, at transmembrane pressures covering the range of $1{\times}10^5$ to $3{\times}10^5Pa$. ANN predictions of the wastewater microfiltration are compared with experimental results obtained using two different set of microfiltration experiments, with and without static turbulence promoter. The effects of the training algorithm, neural network architectures on the ANN performance are discussed. For the most of the cases considered, the ANN proved to be an adequate interpolation tool, where an excellent prediction was obtained using automated Bayesian regularization as training algorithm. The optimal ANN architecture was determined as 4-10-1 with hyperbolic tangent sigmoid transfer function transfer function for hidden and output layers. The error distributions of data revealed that experimental results are in very good agreement with computed ones with only 2% data points had absolute relative error greater than 20% for the microfiltration without static turbulence promoter whereas for the microfiltration with static turbulence promoter it was 1%. The contribution of filtration time variable to flux values provided by ANNs was determined in an important level at the range of 52-66% due to increased membrane fouling by the time. In the case of microfiltration with static turbulence promoter, relative importance of transmembrane pressure and feed flow rate increased for about 30%.

해양 표면 혼합층 모델링에 대한 고찰 (A Review Study of Ocean Surface Mixed Layer Modelling)

  • 오임상;이영로
    • 한국해양학회지
    • /
    • 제27권4호
    • /
    • pp.311-323
    • /
    • 1992
  • 해양의 표면 혼합층 모델은 그 접근방법에 따라 여러 가지로 나눈다. 즉 표면 혼 합층의 존재를 가정하고 출발한 적분모델, 혼합과 관계된 난류항을 K 이론 형태의 확 산 개념으로 나타내거나 혹은 난류 방정식을 이용하여 구하는 확산 모델, 그리고 한 격자점에서의 물리량은 여러 격자점으로부터의 혼합에 의존한다는 Transilient 모델이 이들이다. 각 유형의 모델은 고유의 장단점이 있으므로 연구의 목적과 내용에 따라 이 용되는 모델의 유형을 결정한다. 본 연구에서는 표현 혼합층에 대한 기존의 연구 방법 들을 살펴보고, 이들을 상호 비교하여 각 모델의 효율적인 적응영역을 알아보며, 표현 혼합층에 대한 최근의 연구동향을 알아봄으로써 향후 이 분야 연구에 주춧돌이 되고자 한다.

  • PDF

디이젤엔진내의 복사열전달 효과에 관한 수치해석적 연구 (Numerical simulations of radiative and convective heat transfer in the cylinder of a diesel engine)

  • 임승욱;김동우;이준식
    • 오토저널
    • /
    • 제14권2호
    • /
    • pp.54-64
    • /
    • 1992
  • During combustion process in a diesel engine radiation heat transfer is the same order of magnitude as the convection heat transfer. An approximation of heat and momentum source distributions is applied at a level consistent with those used in modelling the soot distribution and the turbulence instead of modelling the fuel spray and the chemical kinetics. This paper illustrates a use of the third order spherical harmonics approximation to the radiative transfer equation and delta-Eddington approximation to the scattering phase function for droplets in the flow. Results are obtained numerically by a time marching finite difference scheme. This study aims to compare heat transfer with convection heat transfer and to investigate the importance of scattering by fuel droplets and of accounting for spatial variations in the extinction coefficient on the radiative heat flux distributions at the walls of a disc shaped diesel engine.

  • PDF

Pedestrian level wind speeds in downtown Auckland

  • Richards, P.J.;Mallinson, G.D.;McMillan, D.;Li, Y.F.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.151-164
    • /
    • 2002
  • Predictions of the pedestrian level wind speeds for the downtown area of Auckland that have been obtained by wind tunnel and computational fluid dynamic (CFD) modelling are presented. The wind tunnel method involves the observation of erosion patterns as the wind speed is progressively increased. The computational solutions are mean flow calculations, which were obtained by using the finite volume code PHOENICS and the $k-{\varepsilon}$ turbulence model. The results for a variety of wind directions are compared, and it is observed that while the patterns are similar there are noticeable differences. A possible explanation for these differences arises because the tunnel prediction technique is sensitivity to gust wind speeds while the CFD method predicts mean wind speeds. It is shown that in many cases the computational model indicates high mean wind speeds near the corner of a building while the erosion patterns are consistent with eddies being shed from the edge of the building and swept downstream.

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio ;Antonio Buffo ;Daniele Marchisio;Laura Savoldi
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1152-1166
    • /
    • 2023
  • The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

수상안전을 위한 Sculling 동작의 전산유체역학적 연구 (A Computational Fluid Dynamic Study on the Sculling Motion for Water Safety)

  • 이효택;김용재
    • 수산해양교육연구
    • /
    • 제24권1호
    • /
    • pp.18-24
    • /
    • 2012
  • This study analyses the effects of various angles in sculling on human body lift and drag by means of computational fluid dynamics, discusses the importance of sculling and provides a basis for the development of future water safety education programmes. Study subjects were based on the mean data collected from males in the age of 20s from a survey on the anthropometric dimensions of the Koreans. Moreover, lift, drag as well as coefficient values, all of which were governed by the angle of the palm, were calculated using 3-dimentional modelling produced by computational fluid dynamics programmes i.e. CFD. Interpretations were performed via general k-${\varepsilon}$ turbulence modelling in order to determine lift, drag and coefficient values. Turbulence intensity was set to one per cent as per the figures from preceding research papers and 3-dimentional simulations were performed for a total of five different angles $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The drag and lift values for the differing angles of the hands during sculling movement are as follows. The lift and drag values gradually increased with the increasing angle of the palm, however, the magnitude of increase for drag started to predominate lift from $45^{\circ}$ and lift gradually decreased from $60^{\circ}$. Overall, it is concluded that the optimal efficiency of sculling can be achieved at the angles $15^{\circ}$ and $30^{\circ}$, and it is anticipated that greater safety and informative education can be ensured for Life saving trainees if the results were to be applied to practical settings. However, as the study was conducted using simulation programmes which performed analyses on the collected anthropometric dimension, the obtained results cannot be made universal, which warrants furthers studies involving varied study subjects with actual measurements taken in water.

NUMERICAL MODELLING OF SHEET-FLOW TRANSPORT UNDER WAVE AND CURRENT

  • Bakhtiary, Abbas-Yeganeh;Hotoshi Gotoh;Tetsuo Sakai
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.75-84
    • /
    • 2002
  • An Euler-Lagrange two-phase flow model is presented fur simulation sheet-flow transport under wave and current. The flow is computed by solving the Reynolds Averaged Navier-Stokes equation in conjunction with the k-$\varepsilon$ turbulence model for turbulence closure. The sediment transport is introduced as a motion of granular media under the action of unsteady flow from the Lagragian point of view. In other word, motion of every single particle is numerically traced with Movable Bed Simulator (MBS) code based on the Distinct Element Method (DEM), in which the frequent interparticle collision of the moving particles during the sheet-flow transport is sophisticatedly taken into account. The particle diameter effect on time-dependent developing process of sheet-flow transport is investigated, by using three different diameter sizes of sediment. The influence of an imposed current on oscillatory sheet-flow transport is also investigated. It is concluded that the sediment transport rate increases due to the relaxation process related to the time-lag between flow velocity and sediment motion.

  • PDF

발달하는 원형제트의 간헐적 유동에 관한 실험적 연구 (An Experimental Study About The Intermittent Flow Field in The Transition Region of a Turbulent Round Jet)

  • 김숭기;조지룡;정명균
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.230-240
    • /
    • 1990
  • 본 연구에서는 원형제트의 천이영역에서 속도신호를 측정하고 이로부터 간헐 도와 간헐주파수를 구하며 이를 사용한 지역평균법으로 난류특성량들을 구하여 천이영 역에서의 난류구조를 해석하고 난류 모델링을 위해 필요한 기초자료를 제공하고자 한 다. 난류강도, 레이놀즈응력, 속도성분의 3차상관 관계등의 레이놀즈평균과 지역평 균들을 제시하였고, 편평도, 비대칭도등의 통계학적인 해석과 확산항에 대한 검토도 행하였다.

초음속 충동형 터빈익형의 공력성능 향상을 위한 기하학적 설계변수 수치연구 (Numerical Investigation of Geometrical Design Variables for Improvement of Aerodynamic Performance of Supersonic Impulse Turbine)

  • 이은석;김진한;조광래
    • 한국항공우주학회지
    • /
    • 제31권8호
    • /
    • pp.99-106
    • /
    • 2003
  • 본 논문에서는 액체추진로켓용 터보펌프내 초음속 충동형 터빈의 공력성능 향상을 위해 기하학적 설계변수를 수치적으로 연구하였다. 터빈의 기하학적 설계변수는 아랫면, 윗면 원호반경, 입사각, 익단두께로 설정, 적절한 구속조건을 도입하였고 목적함수로는 최대파워를 채택하였다. 목적함수를 얻기 위해 2-D Navier-Stokes 방정식과 Chien의 k-$\varepsilon$ 난류 모델링을 수치적으로 계산하였다. 초기모델에서 이형 중앙부에 흐름박리를 볼 수 있었으나 개선된 익형에서 흐름박리는 제거되었다. 본 연구를 통해 약 3.2 %의 축 파워가 증대되었다.