• Title/Summary/Keyword: turbulence field

Search Result 663, Processing Time 0.025 seconds

Prediction of Turbulent Premixed Flamefield in Bunsen Burner (Bunsen Buner 난류 예혼합 화염장의 해석)

  • Cho, Ji-Ho;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

MEASUREMENT OF TURBULENCE CHARACTERISTICS BY USING PARTICLE TRACKING VELOCIMETRY

  • Yoon, Byung-man;Yu, Kwon-kyu;Marian Muste
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.135-142
    • /
    • 2002
  • This study investigates the effects of sediment on the flow characteristics such as velocity distribution, friction velocity, turbulent intensities, Reynolds stress, etc. Particle tracking velocimetry (PTY) is used to measure the vertical flow field. Results show that flow over the high bed-load concentration region has larger values of mean velocity and friction velocity and smaller values of turbulence intensities, compared to those for flow over the low bed-load concentration region.

  • PDF

Jitter Radiation for Gamma-ray Burst Prompt Emission

  • Mao, Ji-Rong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2011
  • We utilize the jitter radiation, which is the emission of relativistic electrons in the random and small-scale magnetic field, to investigate the high-energy emissions of gamma-ray bursts (GRBs). Under the turbulent scenario, the random and small-scale magnetic field is determined by the turbulence. We also estimate the acceleration and cooling timescales. We identify that some GRBs are possible cosmic-ray sources.

  • PDF

A Numerical Analysis for Two-phase Turbulent Flow in the Neutral Atmosphere (중립 대기 상태에서 이상 난류유동에 관한 수치적 연구)

  • Kang, Seung-Kyu;Yoon, Joon-Yong;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.772-778
    • /
    • 2002
  • A numerical analysis of turbulent gas-particle two-phase flow is performed in conjunction with the experiments of Fackrell & Robins and Raupach & Legg that considered ground-level source and/or elevated source flat plate flow. K-$\omega$ turbulence model is used in order to analyze fully turbulent flow field and the concentration equation with settling velocity is adopted for the concentration field. The model of Einstein and Chien is applied that couples the velocity field and the concentration field. Turbulent eddy viscosity is re-evaluated in this model. The present numerical results have good agreement between the simulation and the experimental data for the mean flow velocities and particle concentrations. While the previous study shows about 27% error in the vicinity of the source of particle concentration, the .present study allows about 14% error. A new turbulent gas-particle flow model developed by this study is able to cut down error by 13% at a near source.

Validation of Numerical Model for the Wind Flow over Real Terrain (실지형을 지나는 대기유동에 대한 수치모델의 검증)

  • Kim, Hyeon-Gu;Lee, Jeong-Muk;No, Yu-Jeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

Monitoring of wind effects on an instrumented low-rise building during severe tropical storm

  • Li, Q.S.;Hu, S.Y.
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.469-488
    • /
    • 2015
  • A full-scale instrumented low-rise building with gable roof was built at a coastal site with a high incidence of tropical cyclones for monitoring of wind effects on the building during windstorms. This paper presents the field measurements of the wind velocity field around and the wind-induced pressures on the low-rise building during the passage of severe tropical storm Soudelor. Near-ground wind characteristics such as wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and wind velocity spectra were investigated. The wind-induced pressures on the roof of the building were analyzed and discussed. The results revealed that the eave and ridge edges on the roof were subjected to the most severe suction pressures under quartering winds. These suction pressures showed obvious non-Gaussian behavior. The measured results were compared with the provisions of ASCE 7-10 to assess the suitability of the code of practice for the wind-resistant design of low-rise buildings under tropical cyclones. The field study aims to provide useful information that can enhance our understanding of the extreme wind effects on low-rise buildings in an effort to reduce tropical cyclone wind damages to residential buildings.

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF

A Prediction of Turbulent Characteristics in a Complex Terrain by Linear Theory (선형이론에 의한 복잡지형 내 난류 특성의 예측)

  • Yoon, J.E.;Kyong, N.H.;Kim, S.W.
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • The external conditions for estimating dynamic wind loads of wind turbines, such as the turbulence, the extreme wind, the mean velocity gradients and the flow angles, are simulated over GangWon Wind Energy Test Field placed in one of the most complex terrain in Korea. Reference meteorological data has been gathered at a height of 30m from 2003 to 2004 with a ultrasonic anemometer. The absolute value of the spectral energy are simulated and the verification of this prediction has been carried out with comparing to the experimental data. The most desirable place for constructing new wind turbine are resulted as Point 2 and Point 3 due to the lower value of Turbulence Intensity and the higher value of wind resource relatively.

Numerical Study on $\kappa-\omega$ Turbulence Models for Supersonic Impinging Jet Flow Field (초음속 충돌 제트 유동에 대한 $\kappa-\omega$ 난류모델의 적용)

  • Kim E.;Park S. H.;Kwon J. H.;Kim S. I.;Park S. O.;Lee K. S.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.139-145
    • /
    • 2004
  • A numerical study of underexpanded jet and impingement on a wall mounted at various distances from the nozzle exit is presented. The 3-dimensional Navier-Stokes equations and $\kappa-\omega$ turbulence equations are solved. The grids are constructed as overlapped grid systems to examine the distance effect. The DADI method is applied to obtain steady-state solutions. To avoid numerical instability such as the carbuncle that sometimes accompany approximate Riemann solver, the HLLE+ scheme is employed for the inviscid flux at the cell interfaces. A goal of this work is to apply a number of two-equation turbulence models based on the $\omega$ equation to the impinging jet problem.

  • PDF