• 제목/요약/키워드: turbulence effects

검색결과 673건 처리시간 0.025초

Seasonal effectiveness of a Korean traditional deciduous windbreak in reducing wind speed

  • Koh, Insu;Park, Chan-Ryul;Kang, Wanmo;Lee, Dowon
    • Journal of Ecology and Environment
    • /
    • 제37권2호
    • /
    • pp.91-97
    • /
    • 2014
  • Little is known about how the increased porosity of a deciduous windbreak, which results from loss of leaves, influences wind speed reduction. We hypothesized that, with loss of foliage, the wind speed reduction effectiveness of a deciduous windbreak decreases on near leeward side but not on further leeward side and that wind speed recovers faster in the full foliage season than in other seasons. During summer, autumn, and winter (full, medium, and non-foliage season, respectively), we observed wind speed and direction around a deciduous windbreak in a traditional Korean village on windward and near and further leeward sides (at -8H, 2H, and 6H; H = 20 m, a windbreak height). We used a linear mixed effects model to determine that the relative wind speed reduction at 2H significantly decreased from 83% to 48% ($F_{2,111.97}=73.6$, P < 0.0001) with the loss of foliage. However, the relative wind speed reduction at 6H significantly increased from 26% to 43% ($F_{2,98.54}=18.5$, P < 0.0001). Consequently, wind speed recovery rate between 2H and 6H in summer was two times higher than in autumn and ten times higher than in winter ($F_{2,102.93}=223.1$, P < 0.0001). These results indicate that deciduous windbreaks with full foliage seem to induce large turbulence and increase wind speed recovery rate on leeward side. Our study suggests that further research is needed to find the optimal foliage density of a deciduous windbreak for maximizing windbreak effectiveness regardless of seasonal foliage changes.

풍동을 이용한 간척지 내 양지붕형 온실의 지붕 경사에 따른 풍압계수 평가 (Estimation of Wind Pressure Coefficients on Even-Span Greenhouse Built in Reclaimed Land according to Roof Slop using Wind Tunnel)

  • 김락우;김동우;류기철;권경석;이인복
    • 생물환경조절학회지
    • /
    • 제23권4호
    • /
    • pp.269-280
    • /
    • 2014
  • To cope with increasing of vegetables and flowers consumptions, horticulture facilities have been modernized. Korea government recently announced construction plan of new greenhouse complex at reclaimed land. However wind characteristics of reclaimed land is totally different from those of inland, wind pressure on greenhouse built in reclaimed land should be carefully evaluated to secure structural safety on the greenhouse. In this study, as a first step, wind pressure coefficient and local wind pressure coefficient on even-span greenhouse were measured using wind tunnel test. ESDU was adopted to realize wind characteristics of reclaimed land such as wind and turbulence profiles. From the wind tunnel test, when wind direction was 0 degree, it was concluded that KBC2009 standard underestimated scale of wind pressure coefficients at roof area of greenhouse whereas NEN-EN2002 standard underestimated those at every surface of greenhouse. When wind direction was 90 degree, both standards did not well reflect the characteristics of wind pressure distribution. From the analysis of local wind pressure coefficients according to wind direction conditions, design of covering, glazing bar of greenhouse where large effects of the local wind pressure were estimated should be well established. Wind pressure coefficients and local wind pressure coefficients according to parts of the greenhouse were finally suggested and these results could be practically used for suggesting new design standards of greenhouse.

CANDU6 감속재 온도분포 계산을 위한 CFD 해석모델의 타당성 검토 (Validation of a CFD Analysis Model for the Calculation of CANDU6 Moderator Temperature Distribution)

  • 윤철;이보욱;민병주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.499-504
    • /
    • 2001
  • A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory(SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard $k-\varepsilon$ turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than $2.0^{\circ}C$ over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well.

  • PDF

한반도(韓半島) 주위(周圍) 대륙붕(大陸棚) 사질(砂質) 퇴적물(堆積物)의 표면유동구조(表面流動構造) (Bedform Morphology of the Continental Shelf Sandy Sediments Around the Korean Peninsula)

  • 석봉출
    • 한국해양학회지
    • /
    • 제29권3호
    • /
    • pp.239-247
    • /
    • 1994
  • 한반도주위 동지나해, 황해, 대한해협의 대륙붕 사질퇴적물상에 발단하는 표면유 동구조중 거대연흔 (giant ripple)에 대한 연구가 사이드스캔소, 고해상탄성파, 퇴적 상, 해저지형 및 해양물지자료에 기초하여 수행되었으며, 거대연흔의 지역별 분포특성 과 발달기구가 구명되었다. 조사내에는 파장이 100∼500 m, 파고가 2∼10 m 에 달하는 거대연흔이 중립∼세립질 모래가 분포하는 대륙붕지역의 9개 경하에서 형성되었으며, 조사해역내의 거대연흔은 지역적으로 다음과 같은 두 가지의 해저환경하에서 특징적으 로 발달한다. 즉, 대한해협과 같이 지효과에 의하면 저층류가 가속되는 지형협소지역 과 조류와 연안류가 조화를 이루는 대륙붕 사질 평탄지역으로 대표된다.

  • PDF

소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 설계 (Low-noise Design of Passage of Idle Speed Control Actuator In Automotive Engines Using Scaling Laws for Noise Prediction)

  • 정철웅;김재현;김성태;박용환;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.683-692
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an idle speed control actuator(ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying computational fluid dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

다공확장벽을 이용한 미사일 동체에 대한 플룸간섭 현상의 제어 (Control of Plume Interference Effects on a Missile Body Using a Porous Extension)

  • Young-Ki Lee;Heuy-Dong Kim
    • 한국추진공학회지
    • /
    • 제7권4호
    • /
    • pp.33-38
    • /
    • 2003
  • 플룸간섭 현상은 플룸에 의한 경계층 유동의 박리, 강한 전단층의 발생, 그리고 다수의 충격파들이 박리유동 및 전단층과 상호작용하게 되는 매우 복잡한 유동현상으로, 현재 미사일의 후미부에서 발생하는 플룸간섭 현상의 상세에 관해서는 잘 알려져 있지 않다. 본 연구에서는 초음속 미사일의 동체후미부에서 발생하는 플룸간섭 현상의 특징 및 동체기저부에 설치된 다공확장벽(porous extension)의 플룸간섭 현상에 대한 영향을 수치해석적으로 조사하였다. 그 결과, 다공확장벽이 플룸에 의한 충격파와 경계층 유동의 박리를 완화시켜 미사일 동체의 제어성능이 향상될 수 있음을 알았다.

유체유발하중을 받는 상부안내구조물의 랜덤진동 및 조화응답해석 (Random Vibration and Harmonic Response Analyses of Upper Guide Structure Assembly to Flow Induced Loads)

  • 지용관;이영신
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.59-68
    • /
    • 2002
  • 원자로 내부구조물의 상부안내구조물집합체는 노심지지배럴과 내부배럴집합체와 함께 원통형의 실린더 구조이며, 유체의 난류하중과 펌프의 맥동하중으로 인한 유체유발하중을 수평방향으로 받는다. 본 논문에서는 이 유체유발하중에 대한 랜덤진동해석과 조화응답해석을 수행한 내용을 기술하였다. 이 해석을 위해 집중질량 보 요소 모델을 사용하였고, 랜덤하중과 펌프맥동하중으로 발생되는 동적응답특성을 평가하였다. 특히 원통형태의 상부안내구조물, 노심지지배럴, 내부배럴집합체 사이에서 형성되는 환형공간의 동수력 연성 효과를 고려하여 모델링 하였고, 상부안내구조물 안쪽에 설치되는 내부배럴집합체의 추가 영향을 검토하였다. 내부배럴집합체의 추가로 인한 하중조건별 최대동적응답은 구조물의 고유진동수에 영향을 받으며, 따라서 구조물의 최대동적응답은 여러 하중 조건별 동적해석 평가를 통해 보수적으로 구하여져야 한다.

자유표면을 포함한 선체주위 난류유동 해석 (Computation of Turbulent Flow around a Ship Model with Free-Surface)

  • 김정중;김형태
    • 대한조선학회논문집
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2001
  • 본 논문에서는 비압축성 Reynolds-Averaged Navier-Stokes 방정식을 수치 해석하여 자유표면을 포함한 선체 주위의 난류 유동을 계산하였다. 정규격자 상에서 공간의 이산화는 2차 정도의 유한차분법을, 시간의 적분에는 4단계 Runge-Kutta법을 이용하였고, 난류 닫힘 조건을 만족시키기 위해 Baldwin-Lomax 난류 모형을 사용하였다. 자유표면의 위치는 운동학적 경계조건식을 Lax-Wendroff법으로 풀어서 구하였고, 자유표면과 격자 경계면을 일치시키기 위해 매 시간마다 새로 계산된 자유표면 위치에 맞추어 격자를 새로 구성하였다. 속도와 압력에 대한 경계조건은 자유표면에서 점성을 무시하여 근사한 동역학적 조건을 적용해서 구하였다. 본 연구에서 개발된 수치해법을 검증하기 위하여 실험자료가 많은 Wigley 선형과 Sries 60 $C_B=0.6$ 선형에 대해 수치계산을 수행하였고 계산된 선체 주위의 파형이 실험 결과와 잘 일치하는 것을 확인하였다.

  • PDF

터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구 (A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling)

  • 이정희;김신일;유홍선;최영기
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.

공기분사가 오일미스트 윤활 시스템용 비접촉 시일의 성능 향상에 미치는 영향 (Air Jet Effect on Performance Improvement of Non-Contact Type Seals for Oil Mist Lubrication Systems)

  • 나병철;전경진;한동철
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2159-2166
    • /
    • 2000
  • Recently, high performance machining center requires special type of sealing mechanism that prevent a leakage of oil jet or oil mist lubrication system. Sealing of oil-air mixture plays important r oles to have an enhanced lubrication for performance machining center. Current work emphasizes on investigations of the air jet effect on the protective collar type labyrinth seal. To improve sealing capabilities of conventional labyrinth seals, air jet is injected against the leakage flow. In this study, an adapted model is introduced to improve sealing capability of conventional non-contact type seals. It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. The sealing effects of the leakage clearance and the air jet magnitude aic studied in various parameters. Gas or liquid has been used as a working fluid for most of nori-contact types seals including the labyrinth seal. However, it is more reasonable to regard two-phase flows because oil mist or oil jet are used for high performance spindle's lubrication. In this study, working fluid is regarded as two phases that are mixed flow of oil and air phase. Both of turbulence and compressible flow model are also introduced in a CFD analysis to represent an isentropic process. Estimation of non-leaking property is determined by amount of pressure drop in the leakage path. Results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effect of the sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger