• Title/Summary/Keyword: turbopump

Search Result 294, Processing Time 0.023 seconds

Turbopump+Gas generator Closed-loop coupled test (터보펌프+가스발생기 폐회로 연계시험)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.129-132
    • /
    • 2008
  • For the development of the 30tonf level LOx/kerosene liquid rocket engine, turbopump-gas generator closed-loop coupled tests are performed. To simulate engine operation conditions, combustion chamber was substituted by flow control orifices. In simulated engine system operation environment, chill-down procedure, startup characteristics, nominal operability of turbopump+gas generator coupled Test Plant are confirmed. Turbopump and gas generator are confirmed to operate well in simulated engine environment. The control system for regulating power and mixture ratio of Test Plant are also successfully confirmed.

  • PDF

Operational Characteristic of Liquid Rocket Engine by Cavitation Instability at Low Inlet Pressure Condition (낮은 입구압력 조건에서 캐비테이션 불안정성에 의한 액체로켓엔진의 작동 특성)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.93-100
    • /
    • 2020
  • The turbopump of the liquid rocket engine adapts an inducer to minimize the cavitation due to the variations of the propellants supply condition. However, the inducer introduces cavitation instabilities which are well-known problems in the engine development. In this paper, operational characteristics by the cavitation instabilities are analyzed and the reliability of the engine is checked when the first stage engine of the KSLV-II is tested at the low inlet pressure conditions. The characteristic frequencies representing the cavitation instabilities of the LOx pump are clearly found in various high frequency sensor signals around the entire engine in addition to the LOx and fuel pump.

Performance Tests of the Fuel Pump for a Turbopump (터보펌프용 연료펌프의 성능 시험)

  • Kim, Dae-Jin;Hong, Soon-Sam;Choi, Chang-Ho;Kim, Jinhan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.655-659
    • /
    • 2004
  • Performance tests of the fuel pump for a turbopump unit have been successfully carried out in water environment. The tests are performed to evaluate the hydraulic and cavitation performances. The head and volute pressure distribution of the fuel pump followed the conventional similarity rule - unlike this, the secondary passage pressure distribution showed a small deviation from the conventional similarity rule. Also, critical cavitation number decreased as the rotational speed of the pump increased.

  • PDF

Cryogenic Performance Test of a Turbopump Inducer (터보펌프 인듀서에 대한 극저온 성능시험)

  • Kim, Jin-Sun;Kim, Jin-Han;Hong, Soon-Sam
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • A test facility was developed where an inducer for a liquid rocket engine turbopump can be tested using liquid nitrogen as a working fluid. At the facility, a hydrodynamic performance test and a cavitation performance test for an oxidizer turbopump were carried out. Head-flow relation at liquid nitrogen test was similar to the case at water test. However, cavitation performance at the liquid nitrogen was superior to the case at water test, which results from the thermodynamic effect of cavitation.

Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump (산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구)

  • Jeon, Seong-Min;Kim, Jin-han;Yang, Soo-Seok;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.25-32
    • /
    • 2002
  • Structural and dynamic analyses of inducer and impeller for an oxidizer turbopump are peformed to investigate the safety level of strength and vibration at a design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three-dimensional Finite Element Method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances are sufficient enough for safe operation within the requited life cycle.

Cryogenic Performance Test of a Turbopump Inducer (터보펌프 인듀서에 대한 극저온 성능시험)

  • Hong Soon-Sam;Kim Jin-Sun;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.93-99
    • /
    • 2006
  • A test facility was developed where an inducer for a liquid rocket engine turbopump can be tested using liquid nitrogen as a working fluid. At the facility, a hydrodynamic performance test and a cavitation performance test for an oxidizer turbopump were carried out. Head-flow relation at liquid nitrogen test was similar to the case at water test. However, cavitation performance at the liquid nitrogen was superior to the case at water test, which results from the thermodynamic effect of cavitation.

  • PDF

Numerical Simulation of Suction Performance of a Forward-Sweep Inducer for Turbopumps (터보펌프용 전진익형 인듀서 흡입성능 유동해석)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jinhan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.13-18
    • /
    • 2014
  • Computational and experimental studies on a forward-sweep inducer for turbopumps were performed to see the effect of the blade sweep on the suction performance of the inducer. Computational results show that backflows at the inlet decrease in the case of the forward-sweep inducer by inhibiting pre-rotation of the inflow and the low pressure region near the tip also diminishes, which is presumed to improve the suction performance of the inducer. The predicted suction performance of the inducer is compared with the experimental result. The result shows that the computation overestimates the suction performance of the inducer compared to the value from the experiment.

Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump (산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구)

  • Jeon, Seong Min;Kim, Jinhan;Yang, Soo-Seok;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.271-278
    • /
    • 2001
  • Structural and dynamic analyses of inducer and impeller for a oxidizer turbopump are peformed to investigate the safety level of strength and vibration at design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three dimensional finite element method(FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances m sufficient enough to be operated safely within the required life cycle.

  • PDF

The Possibility and Risk of Generation of Cavitation at the inlet of the Turbopump (선화제펌프 입구에서 캐비테이션 발생 가능성 및 위험성 평가)

  • Kim, Cheul-Woong;Moon, In-Sang;Bershadskiy, V.A
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.279-282
    • /
    • 2006
  • Upon a turbopump's running, cavitation may occur at the inlet of the LOx pump by pressure drop and heat transfer along the LOx feeding line. Since the cavitation can cause serious damage to the pump or to stop running, the absence of the cavitation at the inlet of a turbopump should be confirmed before the using the turbopump. In the present study, the calculation of the volume fraction of LOx gas phase at the inlet of the pump are performed with different temperatures of LOx in the tank, pressure drops and heat transfers along the feeding line. This calculation method can be applied to define the limits of thermal and hydraulic characteristics during the design of a LOx feeding system.

  • PDF

Investigation on the Performance Characteristics of the 75ton Class Turbopump Turbine (75톤급 액체로켓 엔진 터보펌프 터빈의 성능특성연구)

  • Jeong, Eun-Hwan;Lee, Hang-Gee;Park, Pyun-Goo;Kwak, Hyun-D.;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.65-71
    • /
    • 2010
  • Performance test of the 75ton class turbopump turbine was performed. Using the measured turbine power characteristics in the wide-range operational conditions, variations of nozzle velocity ratio, total pressure loss, and relative flow angle to the pressure ratios and rotational speeds are quantified. Efficiency and nozzle exit pressure behavior was also investigated and compared with 30ton turbopump turbine data. A rotor blade was redesigned based on the test results and CFD analysis.