• Title/Summary/Keyword: turbopump

Search Result 294, Processing Time 0.021 seconds

Cryogenic Performance Test of LOX Turbopump in Liquid Nitrogen (액체질소를 이용한 산화제펌프의 극저온 성능시험)

  • Kim, Jin-Sun;Hong, Soon-Sam;Kim, Dae-Jin;Choi, Chang-Ho;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.391-397
    • /
    • 2010
  • Performance tests of a liquid-oxygen pump were carried out using liquid nitrogen (LN2) as a working fluid in a cryogenic turbopump test facility in Korea Aerospace Research Institute (KARI). The tests were performed at 30-55% of the design rotational speed, and the results were compared with those from a water test. The experimental results confirmed the similarity of the hydraulic performance, which allows the prediction of the pump performance at a design rotational speed of 20,000 rpm. The overall cavitation performance of the pump in the cryogenic environment was better than that in the water environment for all ranges of flow rates and rotational speeds. Critical cavitation number at the design flow rate was determined as 0.012 from the cryogenic test, and as 0.024 from the water test. The improved cavitation performance is due to the thermodynamic effect in cryogenic fluids.

Real-Propellant Test of a Turbopump for a 30-Ton Thrust Level of Liquid Rocket Engine (30톤급 액체로켓엔진용 터보펌프 실매질시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.20-26
    • /
    • 2009
  • Turbopump test for a 30-ton-thrust liquid rocket engine was carried out using real-propellant. Liquid oxygen, kerosene, cold hydrogen gas were used for the oxidizer pump, the fuel pump, and the turbine, respectively. The turbopump was reliably operated at the design and off-design conditions and the performance requirements were satisfied, which implies that the turbopump development at the engine subsystem level is successfully accomplished in the point of performance validation. This paper presents the results of a test where the turbopump was run for 75 seconds at three operating modes. In terms of performance characteristics of pumps and turbine, the results of turbopump assembly test using real-propellant showed a good agreement with those of the turbopump component tests using simulant working fluid.

Real-Propellant Test of a Turbopump for a 30-Ton Thrust Level of Liquid Rocket Engine (30톤급 액체로켓엔진용 터보펌프 실매질시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.359-365
    • /
    • 2008
  • Turbopump test for a 30-ton-thrust liquid rocket engine was carried out using real-propellant. Liquid oxygen, kerosene, cold hydrogen gas were used for the oxidizer pump, the fuel pump, the turbine, respectively. The turbopump was run stably at the design and off-design conditions and the performance requirements were satisfied, which implies that the turbopump development at the engine subsystem level is successfully accomplished in the point of performance validation. This paper presents the results of a test where the turbopump was run for 75 seconds at three operating modes. In terms of performance characteristics of pumps and turbine, the results from turbopump assembly test using real-propellant showed a good agreement with those from the turbopump component tests using simulant working fluid.

  • PDF

Performance Test of Inter-propellant Seal (추진제 혼합 방지 실의 성능시험)

  • Kwak, Hyun-D.;Jeon, Seong-Min;Kim, Jin-Han
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.322-328
    • /
    • 2010
  • An inter-propellant seal (IPS) for 75 ton class thrust turbopump was tested. Leakage characteristics were presented with a given range of pressure difference under cryogenic as well as room temperature conditions. For cryogenic tests, liquid nitrogen was used as analogic fluid of liquid oxygen (LOX) while water was used instead of kerosene for room temperature condition. Test results showed that IPS had satisfactory leakage performance. Additionally endurance test was conducted to prove the life time of manufactured IPS and the tested IPS had successfully survived during required life time, 2100 seconds.

Status of the Development of Turbopumps in Korea (국내 터보펌프 개발 현황)

  • Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-78
    • /
    • 2008
  • The development of turbopump in Korea has been practically started from 1999. Recently, the turbopump for a LRE with 30-ton level thrust has been successfully developed, which is able to work for all the required LRE regimes. This success is considered as a breakthrough in development of LRE because the turbopump, a core component of LREs, has been considered as a critical barrier in domestic technology point of view. In this paper, status of the turbopump development in Korea is provided and some suggestions are made for the prospective future.

Development Status of a Turbopump for 30-ton Thrust Level of Engine (30톤급 액체로켓엔진용 터보펌프 개발현황)

  • Kim Jin-Han;Hong Soon-Sam;Jeong Eun-Hwan;Choi Chang-Ho;Jeon Seong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.375-383
    • /
    • 2005
  • The present paper describes the first development of a LOX/kerosene type turbopump in Korea. The liquid rocket engine, that the turbopump can be applied to, has a 30-ton(metric) level of vacuum thrust and employs a gas generator cycle. The turbopump consists of two single-stage centrifugal pumps, that is, LOX and kerosene pumps, and one single-stage impulse turbine. Inter-propellant seal(IPS) is located between the LOX pump and the kerosene pump to avoid any interaction between the propellants. A series of component and TPU(Turbopump Unit) test has been completed in the level of simulant propellants and ready for hot firing tests.

  • PDF

Introduction to Construction of a Turbopump Real-Propellant Test Facility (터보펌프 실매질 시험설비 구축에 대한 소개)

  • Kim, Jin-Sun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.835-840
    • /
    • 2011
  • The development of a turbopump is fundamental to have an independent LRE(liquid rocket engine) for KSLV-II. Recently, the detail design of a turbopump real-propellant test facility based on liquid oxygen and kerosene has been performed to structure the test facility for the experimental validation of the turbopump. In this paper, the design requirements of the turbopump and the specifications of the test facility was presented and the representative sub-facilities were explained on the basis of the design results. Also, the uncertainty of the sub-facilities which could be appeared during the operation was removed in advance through the simulation method and the experimental verification.

  • PDF

Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid (75톤급 액체로켓엔진용 터보펌프 조립체의 상사매질 성능시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Performance test of a full-scale turbopump assembly for a 75 ton class liquid rocket engine was carried out at full speed. Model fluid was used as a working medium: liquid nitrogen for the oxidizer pump, water for the fuel pump, and hot air for the turbine. The turbopump was operated stably, satisfying the performance requirements. Head coefficient and flow coefficient of the pumps remained constant at the speed-increasing period. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test showed a good agreement with those from the turbopump component tests.

Research on the Torque and Starting Characteristics of a Turbopump Turbine (터보펌프 터빈의 토크 및 시동특성 연구)

  • Jeong, Eunhwan;Lee, Hang-Gi;Park, Pyun-Goo;Hong, Moongeun;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Torque characteristics of a turbopump turbine was analyzed using the turbine performance test result. Specific torque of the subject turbine could be expressed as a linear function of corrected rotor speed at a fixed pressure ratio and it has been confirmed by the test result. It also found that corrected rotor speed-specific torque characteristics does not change anymore if the turbine pressure ratio is set bigger than a certain value. Using the turbine torque characteristics and pyro-starter performance test results, rotational speed development behavior of the turbopump was predicted. Prediction revealed that the lap time reaching 50% of turbopump design speed is less than 0.7 second. Effect of the thermal loss between pyro-starter and turbopump was negligible.

Study on the Turbine Performance of 7 ton Liquid Rocket Engine Turbopump (7톤급 액체로켓 엔진 터보펌프 터빈 성능 연구)

  • Lee, Hanggi;Shin, Juhyun;Choi, Changho
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This study was performed to evaluate the turbine performance of a turbopump in the third stage engine of the Korea Space Launch Vehicle-II. The turbine is a supersonic impulse type with a single rotor. One nozzle is for starting and four remaining nozzles are for steady operation. A similarity test was carried out in the high air test facilities at the Korea Aerospace Research Institute. Test results showed that turbine efficiency changed much more from rotational speed variations than by pressure ratio variations. These results showed characteristics similar to other supersonic impulse turbines.