• Title/Summary/Keyword: turbine rotor

Search Result 882, Processing Time 0.029 seconds

Analysis of Flows around the Rotor-Blades as Rotating Body System of Wind Turbine (풍력 발전기의 Rotor-Blades 회전체 시스템 공력 해석)

  • Kim, Don-Jean;Kwag, Seung-Hyun;Lee, Kyong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.25-31
    • /
    • 2009
  • The most important component of wind turbine is rotor blades. The developing method of wind turbine was focused on design of rotor blade. By the way, the design of a rotating body is more decisive process in order to adjust the performance of wind turbine. For instance, the design allows the designer to specify the wind characteristics derived by topographical map. The iterative solver is then used to adjust one of the selected inputs so that the desired rotating performance which is directly related to power generating capacity and efficiency is achieved. Furthermore, in order to save the money for manufacturing the rotor blades and to decrease the maintenance fee of wind power generation plant, while decelerating the cut-in speed of rotor. Therefore, the design and manufacturing of rotating body is understood as a substantial technology of wind power generation plant development. The aiming of this study is building-up the profitable approach to designing of rotating body as a system for the wind power generation plant. The process was conducted in two steps. Firstly, general designing and it’s serial testing of rotating body for voltage measurement. Secondly, the serial test results above were examined with the CFD code. Then, the analysis is made on the basis of amount of electricity generated by rotor-blades and of cut-in speed of generator.

Shape design and flow analysis on a 200W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 형상설계 및 유동해석)

  • Cho, Woo-Seok;Kim, Hyun-Su;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.170-177
    • /
    • 2013
  • This study is focused on the shape design and flow analysis on a 200 W-class Gyromill type vertical axis wind turbine rotor blade. Single tube theory is adopted for the shape design of the turbine blade. 2-dimensional CFD analysis is conducted to examine the turbine performance with basic shape, and then 3-dimensional shape is determined from the examination of the performance. By the CFD analysis on the 3-dimensional shape of the wind turbine, performance of the turbine is examined and also, shape of the wind turbine rotor blade is determined accordingly. From the results of this study, a 200 W-class Gyromill type vertical axis wind turbine rotor blade is designed and the reliability of the design method is confirmed by CFD analysis.

Numerical Analysis of a Turbine Rotor Cascade with Unsteady Passing Wakes (비정상 후류를 지나는 터빈 동익 주위의 유동장 수치해석)

  • Lee, Eun-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.153-156
    • /
    • 2006
  • A turbine stage consists of a stator and rotor. A stator provides the required inlet flow conditions so that a rotor can produce the necessary power. Passing wakes generated at the trailing edge of a stator make an interaction with a rotor. In the present study, this interaction flow mechanism is investigated using the numerical analysis. In case of the large gap distance between the stator and rotor, the stator and rotor flow analysis can be separated. First, only the stator flow field is solved. Second, the rotor flow field is solved including the passing wake information from the stator analysis. The passing wake experiences the shearing as it approaches to the rotor leading edge. And it is chopped when it strikes the rotor body. After that, the chopped wakes becomes the prolongation as it goes downstream. Also, the aerodynamic characteristics with the variation of the gap distance between a stator and rotor was investigated. Pressure jumps due to the passing wakes result in the pressure and lift loss and it gets stronger with the closer gap distance. This unsteady effect proves to be directly related to the fatigue and noise in turbomachinery and this study would be helpful to investigate such fields.

  • PDF

Wind tunnel effect analysis for MEXICO wind turbine model (MEXNEXT 풍력발전기 풍동 시험에 대한 풍동 영향 분석)

  • Shin, Hyungki;Lim, Jongsoo;Jang, Moonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • In this research, CFD calculation was implemented to analyze wind tunnel effect or rotor experiment in wind tunnel. One case included model wind turbine and all wind tunnel geometries. The other case include only rotor and nacelle system. Star-CCM+ was used for CFD analysis and rigid body motion around rotor area was applied to simulate rotating rotor. As for turbulence model, K-omega SST was used. The results were compared in 15m/s inflow condition. These results shows a good agreement with the measurement. Then, the result without wind tunnel was slightly different to the result with wind tunnel. Thus, in the case of Mexnex wind tunnel measurement, the wind tunnel don't affect the measurement result. Then, this wind tunnel and rotor size ratio can be reference for wind tunnel experiment of wind turbine rotor.

  • PDF

Analysis of High Vibration in Nuclear Turbine-Generator (원자력 발전소 터빈-발전기 고진동 저감에 대한 고찰)

  • Lee, Woo-Kwang;Ko, Woo-Sig;Kim, Kye-Yean;Koo, Jae-Raeyang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.46-50
    • /
    • 2007
  • The nuclear power plant's turbine-generator system had been suffered form some problems, such as high shaft vibration, generator casing crack, stator coil water leakage, high $H_2$ gas consumption rate. Those kinds of problems were related to high vibration. So nuclear plant decided to replace generator in order to reduce rotor high vibration and high thermal sensitivity. A series of effort to reduce turbine-generator vibration was carried out as followings, first of all, replacement of generator, analysis of turbine-generator vibration, LP B rotor shop balancing, improvement of LP B/Gen coupling run-out, improvement of Generator basement and field balancing. Finally the nuclear turbine-generator's shaft vibration was reduced below $60{\mu}m$ from over $200{\mu}m$ which is very excellent vibration in nuclear turbine-generator in Korea.

  • PDF

An Airborne Cycloidal Wind Turbine Mounted Using a Tethered Balloon

  • Hwang, In-Seong;Kang, Wang-Gu;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.354-359
    • /
    • 2011
  • This study proposes a design for an airborne wind turbine generator. The proposed system comprises a cycloidal wind turbine adopting a cycloidal rotor blade system that is used at a high altitude. The turbine is mounted on a tethered balloon. The proposed system is relatively easier to be realized and stable. Moreover, the rotor efficiency is high, which can be adjusted using the blade pitch angle variation. In addition, the rotor is well adapted to the wind-flow direction change. This article proves the feasibility of the proposed system through a sample design for a wind turbine that produces a power of 30 kW. The generated wind power at 500 m height is nearly 3 times of that on the ground.

CFD simulations of a performance-scaled wind turbine

  • Ye, Maokun;Chen, Hamn-Ching;Koop, Arjen
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.247-265
    • /
    • 2022
  • In the present study, we focus on the CFD simulations for the performance and the rotor-generated wake of a model-scale wind turbine which was designed for wave tank experiments. The CFD simulations with fully resolved rotor geometry are performed using MARIN's community-based open-source CFD code ReFRESCO. The absolute formulation method (AFM) is leveraged to model the rotating wind turbine. The k - ω SST turbulence model is adopted in the incompressible Reynolds Averaged Navier-Stokes (RANS) simulations. First, the thrust and torque coefficients, CT and CP, are calculated at different Tip Speed Ratios (TSR), and the results are compared against the experimental data and previous numerical results. The pressure distribution of the turbine blades at the 70% span is obtained and compared to the results obtained by other tools. Then, a verification study aiming at quantifying the discretization uncertainty of the turbine performance with respect to the grid resolution in the wake region is performed. Last, the rotor-generated wake at the TSR of 7 is presented and discussed.

Dual-rotor Wind Turbine Generator System Modeling and Simulation (이중 로터 풍력발전 시스템 모델링 및 시뮬레이션에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Min, Byoung-Mun;Lee, Hyun-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.87-95
    • /
    • 2004
  • In this paper, an efficient method for modeling a dual-rotor type wind turbine generator system and simulation results are presented. The wind turbine is treated as a collection of several rigid bodies, each of which represents, respectively, main and auxiliary rotor blades, high/low speed shafts, generator, and gear system. Simulation software WINSIM is developed to implement the proposed modeling method and is used to investigate the transient and steady-state performance of the wind turbine system.

Rotordynamic Forces Due to Rotor Sealing Gap in Turbines (비대칭 터빈 로터 실에 기인한 축 가진력)

  • Kim Woo June;Song Bum Ho;Song Seung Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF

Rotor Leading Edge Thickness Effect on Supersonic Impulse Turbine Performance (초음속 충동형 터빈의 로터 앞전 두께가 성능 변화에 미치는 영향)

  • Lee, Hang-Gi;Jung, Eun-Hwan;Park, Pyun-Gu;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • Turbopump, which is a part of 75 ton open cycle liquid rocket engine has a super sonic impulse turbine. This paper investigated the leading edge thickness effect on the turbine performance experimently. Two rotors were tested with the different leading edge thickness. The ratios (rotor thickness to Pitch) are 1.9 and 1.4 times to 30 ton turbine rotor. As a result, a rotor with 1.4 times ratio had a 1.5% higher efficiency gain than a rotor with 1.9 times ratio. The pressure ratio with the maximum efficiency on the same rotational speed was increased to the full expansion ratio of nozzle.